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The purpose of this paper is to examine rigorously the arbitrage model 
of capital asset pricing developed in Ross [13, 141. The arbitrage model 
was proposed as an alternative to the mean variance capital asset pricing 
model, introduced by Sharpe, Lintner, and Treynor, that has become the 
major analytic tool for explaining phenomena observed in capital markets 
for risky assets. The principal relation that emerges from the mean 
variance model holds that for any asset, i, its (ex ante) expected return 

Et = p + u, 3 (1) 

where p is the riskless rate of interest, X is the expected excess return 
on the market, E, - p, and 

is the beta coefficient on the market, where CJ,~~ is the variance of the 
market portfolio and 02”, is the covariance between the returns on the ith 
asset and the market portfolio. (If a riskless asset does not exist, p is the 
zero-beta return, i.e., the return on all portfolios uncorrelated with the 
market portfolio.)l 

The linear relation in (1) arises from the mean variance efficiency of the 
market portfolio, but on theoretical grounds it is difficult to justify 
either the assumption of normality in returns (or local normality in 
Wiener diffusion models) or of quadratic preferences to guarantee such 
efficiency, and on empirical grounds the conclusions as well as the 
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1 See Black [2] for an analysis of the mean variance model in the absence of a riskless 
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assumptions of the theory have also come under attack.2 The restrictiveness 
of the assumptions that underlie the mean variance model have, however, 
long been recognized, but its tractability and the evident appeal of the 
linear relation between return, Ei , and risk, 6,) embodied in (1) have 
ensured its popularity. An alternative theory of the pricing of risky assets 
that retains many of the intuitive results of the original theory was 
developed in Ross [13, 141. 

In its barest essentials the argument presented there is as follows. 
Suppose that the random returns on a subset of assets can be expressed 
by a simple factor model 

$ =z Ei + pig + ci , (2) 

where 8 is a mean zero common factor, and Ci is mean zero with the 
vector (z) sufficiently independent to permit the law of large numbers to 
hold. Neglecting the noise term, Ei , as discussed in Ross [14] (2) is a 
statement that the state space tableau of asset returns lies in a two- 
dimensional space that can be spanned by a vector with elements 6,) 
(where 0 denotes the state of the world) and the constant vector, 
e cc (I,..., 1). 

Step 1. Form an arbitrage portfolio, 7, of all the n assets, i.e., a 
portfolio which uses no wealth, ne = 0. We will also require n to be a 
well-diversified portfolio with each component, Q , of order l/n in 
(absolute) magnitude. 

Step 2. By the law of large numbers, for large II the return on the 
arbitrage portfolio 

(3) 

In other words the influence on the well-diversified portfolio of the 
independent noise terms becomes negligible. 

Step 3. If we now also require that the arbitrage portfolio, 7, be chosen 
so as to have no systematic risk, then 

and from (3) 

2 See Blume and Friend [3 J for a recent example of some of the empirical difficulties 
faced by the mean variance model. For a good review of the theoretical and empirical 
literature on the mean variance model see Jensen [6]. 
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Step 4. Using no wealth, the random return q.% has now been engi- 
neered to be equivalent to a certain return, vE, hence to prevent arbitrarily 
large disequilibrium positions we must have V./Z = 0. Since this restriction 
must hold for all 17 such that ve =- VP -= 0, E is spanned by e and p or 

Ei = p + A,& (4) 

for constants p and X. Clearly if there is a riskless asset, p must be its 
rate of return. Even if there is not such an asset, p is the rate of return on 
all zero-beta portfolios, 01, i.e., all portfolios with ale = 1 and L@ = 0. 
If 01 is a particular portfolio of interest, e.g., the market portfolio, !x,,, , 
with E,,, = a,,$, (4) becomes 

Et = p + C-G,, - p) Pi . (5) 

Condition (5) is the arbitrage theory equivalent of (1) and if 8 is a 
market factor return then & will approximate bi . The above approach, 
however, is substantially different from the usual mean-variance analysis 
and constitutes a related but quite distinct theory. For one thing, the 
argument suggests that (5) holds not only in equilibrium situations. but 
in all but the most profound sort of disequilibria. For another, the market 
portfolio plays no special role. 

There are, however, some weak points in the heuristic argument. For 
example, as the number of assets, n, is increased, wealth will, in general, 
also increase. Increasing wealth, though, may increase the risk aversion of 
some economic agents. The law of large numbers implies, in Step 2. that 
the noise term, +, becomes negligible for large n, but if the degree of risk 
aversion is increasing with n these two effects may cancel out and the 
presence of noise may persist as an influence on the pricing relation. 
In Section I we will present an example of a market where this occurs. 
Furthermore, even if the noise term can be eliminated, it is not at all 
obvious that (5) must hold, since the disequilibrium position of one agent 
might be offset by the disequilibrium position of another.3 

In Ross [13], however, it was shown that if (5) holds then it represents 
an E or quasi-equilibrium. The intent of this paper is to supply the rigorous 
analysis underlying the stronger stability arguments above. In Section It 
we will present some weak sufficient conditions to rule out the above 
exceptions (and the example of Section I) and we will prove a general 
version of the arbitrage result. Section 11 also includes a brief argument 
on the empirical practicality of the results. A mathematical appendix 

3 Green has considered this point in a temporary equilibrium model. Essentialli 
he argues that if subjective anticipations differ too much, then arbitrage possibilities 
will threaten the existence of equilibrium. 
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contains some supportive results of a somewhat technical and tangential 
nature. Section III will briefly summarize the paper and suggest further 
generalizations. 

1. A COUNTEREXAMPLE 

In this section we will present an example of a market where the 
sequence of equilibrium pricing relations does not approach the one 
predicted by the arbitrage theory as the number of assets is increased. 
The counterexample is valuable because it makes clear what sort of 
additional assumptions must be imposed to validate the theory. 

Suppose that there is a riskless asset and that risky assets are indepen- 
dently and normally distributed as 

where 

and 

5i = Ei + E”f , (6) 

E{q = 0, 

E(Q) = u2. 

The arbitrage argument would imply that in equilibrium all of the 
independent risk would disappear and, therefore, 

Ei =s p, (7) 

Assume, however, that the market consists of a single agent with a 
von Neumann-Morgenstern utility function of the constant absolute risk 
aversion form, 

U(z) = -exp(--AZ). (8) 

Letting w denote wealth with the riskless asset as the numeraire, and CY the 
portfolio of risky assets (i.e., 0~~ is the proportion of wealth placed in the 
ith risky asset) and taking expectations we have 

= -exp(--Awp) E{exp( --Awol[Z - p . e])) 

= -exp(--Awp){exp(--Awol[E - p . e] + (c~~/~)(Aw)~(~oL))}. (9) 

The first-order conditions at a maximum are given by 
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If the riskless asset is in unit supply the budget constraint (Walras’ Law 
for the market) becomes 

11’ = f @&M’ + 1 = (l//W) i (Ei - p) + 1, 
i-l i=l 

(11) 

The interpretation of the budget constraint (11) depends on the 
particular market situation we are describing. Suppose, first, that we are 
adding assets which will pay a random total numeraire amount, Zi . 
If pi is the current numeraire price of the asset then 

Normalizing all risky assets to be in unit supply we must have 

and the budget constraint simply asserts that wealth is summed value, 

If we let Fi denote the mean of Fi and c2, its variance, then (10) can be 
solved for pi as 

pi = (l/p){C, - AC2). 

As a consequence, the expected returns, 

Ei = &/pi = p(c’J(Ti - Ac2)}, 

will be unaffected by changes in the number of assets, n, for i < n, and 
need bear no systematic relation to p as n increases. This is a violation 
of the arbitrage condition, (7). Notice, too, that as long as C+ is bounded 
above Ac2, wealth and relative risk aversion, Aw, are unbounded in n. 

An alternative interpretation of the market situation would be that as II 
increases the number of risky investment opportunities or activities is 
being increased, but not the number of assets. In this case wealth, w, would 
simply be the number of units of the riskless asset held and would remain 
constant as n increased. The quantities aiw now represent the amount of 
the riskless holdings put into the ith investment opportunity and for the 
market as a whole we must have 



346 STEPHEN A. ROSS 

Furthermore, if the random technological activities are irreversible, 
then each 01~ 3 0. From (10) it follows that 

Ei-p>O 

and 

f Ej - p = 5 I Ei - p ) = u2(Aw) 2 iyi < 054u.. 
i=l i=l i=l 

Hence, as n ---f co, the vector E approaches the constant vector with 
entries p in absolute sum (the Z1 norm) which is a very strong type of 
approximation. Under this second interpretation, then, the arbitrage 
condition (7) holds. 

An easy way to understand the distinction between these two inter- 
pretations is to conceive of the riskless asset as silver dollars, and the 
risky assets as slot machines. In the first interpretation the slot machines 
come with a silver dollar in the slot and pi is the relative price of the ith 
“primed” machine in terms of silver dollars. In the alternative inter- 
pretation, the machines are “unprimed” and we invest CQW silver dollars 
in the ith machine. Which of these two senses of a market being “large” 
is empirically more relevant is a debatable issue, and in the next section 
we will develop assumptions sufficient to verify the arbitrage result for 
both cases (and any intermediate ones as well). 

II. THE ARBITRAGE THEORY 

The difficulty with the constant absolute risk aversion example arises 
because the coefficient of relative risk aversion increases with wealth. 
This suggests considering risk averse agents for whom the coefficient of 
relative risk aversion is uniformly bounded, 

sup {-(U”(X) x/c/‘(x))} < R < co. 
z 

(12) 

We will refer to such agents as being of Type B (for bounded). 
Pratt has shown that given a Type B utility function, U, there exists a 

monotone increasing convex function, G(.), such that 

U(x) = G[Uk @I, (13) 

where iJ(x; R) is the utility function with constant relative risk aversion, R. 
Jt is well known that 

ZJ[x; R) = 
i 
xl-“/( I - R) if R7’1. 
log x if R=l. 
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Essentially, then, Type B agents are uniformly less risk averse than some 
constant relative risk averse agents. 

Assume that the returns on the particular subset of assets under 
consideration are subjectively viewed by agents in the market as being 
generated by a model of the form 

2, = Ei + fi& + ... + && + Eli , 

- E; + pi8 + gi , 
(15) 

where 
E{S,: = E{E,) = 0, 

and where the d,‘s are mutually stochastically uncorrelated. We will 
impose no further restrictions on the form of the multivariate distribution 
of (8, C) beyond the requirement that (3 o < co) 

CJ 2 = E{q2} < G. 1 (16) 

In particular, then, the si need not be jointly independent or even inde- 
pendent of the &‘s, they need not possess variances, and none of the 
random variables need be normally distributed. 

A point on notation is also needed. In what follows, 01~ will denote an 
n-element optimal portfolio for the agent under consideration, i.e., 
UO maximizes E{U[wG]}, subject to ale = 1. The vector p” will be the 
column vector (& ,..., Pnl)’ and pi, as above, denotes the row vector 
(PiI ,..., &,). The single letter /z? will denote the matrix 

[p ; . . . . ; pq. 

ASSUMPTION 1 (Liability limitations). There exists at least one asset 
with limited liability in the sense that there is some bound, t, (per unit 
invested) to the losses for which an agent is liable. 

Assumption 1 is satisfied in the real world by a wide variety of assets. 
We can now prove a key result about Type B agents. 

THEOREM I. Consider a Type B agent who lives in a world that satisfies 
Assumption 1 and who believes that returns are generated by a model of the 
form of(15). If(3m < 03) such that 

ol”E < m, 

then (3p and a k vector, y) such that 

07) 

;I [Ei - P - fb12 < ~0. (18) 
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Proof: The result is independent of the particular wealth sequence (w”> 
and we must prove it for arbitrary sequences. Assume that R # 1. We 
will prove the theorem by constructing a portfolio that bests a0 when (18: 
does not hold. First, from (17), concavity and monotonicity 

E{ U[w”a”Lq} 
< U[w%OE] 

< U[wnm] 

= G[(w”)‘- U(m; R)]. 

Now, consider the arbitrage portfolio sequence that solves the associated 
quadratic problem of minimizing unsystematic (c) risk subject to the 
constraints of having no systematic (/3) risk and attaining an expected 
return greater than m c t: minimize 

subject to 

and 

7fe = 0, 

7j’/l’ = 0; I = I,..., k, 

r)‘E = c > m + t, 

(19) 

where V is the covariance matrix of (Al) and where t is the maximum 
liability loss associated with a unit investment in the limited liability asset. 
Assumption 1 guarantees that t is bounded. We will also assume, without 
loss of generality, that V is of full rank for all 11.~ 

If the constraints are unsolvable for all n, then E must be linearly 
dependent on e and the columns of p and we are done. Suppose then, 
that the constraints are solvable for all n sufficiently large and, without 
loss of generality, let 

be of full rank.5 

4 Since the C, are uncorrelated, V is a diagonal matrix and will be of less than full 
rank only if some asset has no noise term. If  there are two or more such assets the 
arbitrage argument holds exactly and we can eliminate such assets without loss of 
generality. 

5 If  [fl] is not of full rank then we can simply eliminate dependent factors. If  [/3] is of 
full rank, but [fi i e] is not, then all assets will have a common factor z and we can 
write (15) as 

Si = E, + f + ,8$ + ?(. 

Now the proof of Theorem I is essentially unaltered, with the common factor, 6 
retained in all portfolios. 
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We will assume that if a sequence of random variables converges to a 
degenerate law (a constant) in quadratic mean, then the expected utility 
also converges, and defer a rigorous examination of this point to an 
appendix. It follows that there must not be any subsequence on which 

If such a subsequence existed then 

E{U(qP - t; R)] - U(c - t; R) > U(m; R), 

and by the convexity of G(.) there would exist an n such that putting all 
wealth in the limited liability asset and buying the arbitrage portfolio 
would yield 

E{U[w’“($ - t)]} = E{G[(w”)‘-R U((+ - t); R)]f 

>, G[(w”)‘-R E{U(($i - t): R)}] 

> G[(w”)‘-R U(m; R)], 

violating optimality. Hence (3~ > 0) such that (Vn) 

7yvq >:a>. 

Solving (19) we have 

where h is a (k + 2)-vector of multipliers, and applying the constraints of 
(19) yields 

[X’V-1X] x = [J. 

It now follows that 

7)‘Q = A’ [;I 

= [c, O][X’V-1x1-1 [J 

Defining b = (c, 0) we can apply Lemma I in the Appendix to obtain the 
existence of u* and A < 00 such that for all n 

where 
(xa*)‘(xa*) < A < co, m) 

a*b = ca,* = 1 
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Or 
a,* = l/c. 

Defining (I, -y, -p) = ca”, (20) becomes the desired result (18). 
If R = 1, wealth can be factored out of the utility function additively 

and the proof is nearly identical. Q.E.D. 

Theorem I asserts that for a Type B individual, if the optimal expected 
return is uniformly bounded, then it must be the case that the arbitrage 
condition 

Ei m  P + Pi7 

= P + YlPil + ‘.. + YkBik > 

holds in the approximate sense that the sum of squared deviations is 
uniformly bounded. This implies, among other things, that as n increases 

I -% - p - Pny I - 0. (21) 

A number of simple corollaries of Theorem 1 are available. If we adopt 
the alternative interpretation, suggested in Section I, that Zi is the return 
on the ith activity, then wealth will be confined to a compact jnterval if 
there are a limited number of actual assets. It is easy to see that if wealth is 
confined to a compact interval on which the utility function is bounded, 
then Theorem I will hold for any risk averse agent. We also have the 
following corollary. 

COROLLARY 1. Under the conditions of Theorem I if there is a riskless 
asset tken p may be taken to be its rate of return. 

ProofI The return per unit of wealth in the presence of a riskless asset 
is given by 

p + 42 - p), 

where 01 is now the portfolio of risky assets. Deleting the constraint that 
Te = 0 we can simply repeat the proof of Theorem 1 with (E - pe) in the 
place of the E vector. Q.E.D. 

Corollary I, of course, also extends to the alternative interpretation. 
To turn these results into a capital market theory we will assume that 

there is at least one Type B individual who does not become negligible 
as the number of assets, n, is increased. The following definition is helpful. 

DEFINITION. The agent, a”, will be said to be asymptotically negligible 
if, as the number of assets increases, 

w” s w/w - 0, 



CAPITAL ASSET PRICING 351 

where IV” is the agent’s wealth and w is total wealth, i.e., 

For example, an agent will not be asymptotically negligible if the 
sequence of proportionate quantities of assets the agent is endowed with 
is bounded away from zero. 

ASSUMPTION 2 (Nonnegligibility of Type B agents). There exists at 
least one Type B agent who believes that returns are generated by a model 
of the form of (15) and who is not asymptotically negligible. 

To permit us to aggregate to a market relation we will make three more 
assumptions; essentially we must ensure that Theorem I will not be 
“undone” by the rest of the economy. First we assume that agents hold 
compatible subjective beliefs. 

ASSUMPTION 3 (Homogeneity of expectations). All agents hold the 
same expectations, E. Furthermore, all agents are risk averse.6 

ASSUMPTION 4 (Extent of disequilibria). Let fi denote the aggregate 
demand for the ith asset as a fraction of total wealth. We will assume that 
only situations with ti > 0 are to be considered. 

Notice that Assumption 4 does not rule out the possibility that an asset 
can be in excess supply; it only implies that the economy as a whole will 
wish to hold some of it. Assumptions 3 and 4 can be weakened consid- 
erably as will be shown below, but for purposes of demonstration we have 
chosen to leave them in a stronger than necessary form. 

Lastly, we need to specify the generating model (15) a bit more. 

ASSUMPTION 5 (Boundedness of expectations). The sequence, (Ei) is 
uniformly bounded, i.e., 

// E I/ s SUP 1 EC / < 00. V-4 

Assumption 5 will be discussed in Section III. 
We can now prove our central result. 

6 The assumption of risk aversion is quite weak since if fair gambles are permitted, 
any bounded nonconcave portions of agents’ utility functions would be irrelevant. See 
Raiffa [I 11 or Ross [12] for an elaboration of this point. 
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THEOREM II. Given Assumptions 1 through 5, (3p, y) 

Furthermore, if there is a riskless asset, then p is its rate of return.7 

Proof. From Theorem 1 we know that if the conclusion is false then 
for the Type B agent (on a subsequence) 

Let the total fraction of wealth held by the Type B agent be given by o” 
and by the rest of the economy by &I. If Gi denotes the fraction of 6J held 
in asset i by the rest of the economy then by Assumption 4 

fi zz dJaio + c&s?, > 0. 
By definition, 

&s = 1, 

hence 

= 1 (woni + cXi) Ei 

From (23) and Assumption 2 the first sum in the last expression is 
divergent, which together with Assumption 5 (22) implies that 

L;, 1 &,E,--t --co. 

Since 

where wy is the fraction of wealth held by a”, it follows that 

4 T OziEi = T z. ~“~li*Ei 

’ Theorems I and II and Corollary I can be extended to the case where (15) holds 
for only a subset of the assets by generalizing the utility function to be a Lebesque 
dominated sequence of functions conditional on the other assets. 
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and for some agent, a”, 

on a subsequence. By Assumptions 1 and 3 this contradicts optimality. 
The identification of p with the riskless return follows from Corollary 1. 

Q.E.D. 

Theorem II has a straightforward extension to the alternative inter- 
pretation of fi as the return on activity i. In the extension, though, we can, 
of course, drop Assumption 2 and obtain (18) from Assumptions 1, 3, 4, 
and 5 alone. 

As was shown in Ross [14] the basic result of Theorem 2 can be written 
in a number of empirically interesting and intuitively appealing formats. 
For example, by appropriate normalization it can be shown that 

Et-pm PilW - p) + ... + PidE” - p), (24) 

where E’ is the return on all portfolios with LX/~” = 0 for s # 1 and 
c@ = 1. The constant p is now the return on all @’ = 0, i.e., zero-beta 
portfolios. Thus, the risk premium on an asset is the P-weighted sum of 
the factor risk premiums, 

While we have formally proven the main result that the sum of squared 
deviations from the basic pricing relation is bounded above as the number 
of assets increases, it is worthwhile spending some effort to obtain an 
empirical estimate of the size of this bound. To do this we will work 
with a more exact form of our results. Examining the proof of Theorem I 
and Lemma I in the Appendix, we have found a bound to 

or, using the exact form of Lemma I, (obtained by leaving the Hn matrices 
in the sum) we have 

$!! (lhwi - p - /3#]2 < c2,a, 
(25) 

where c is the return premium on the arbitrage portfolio over a risk free 
rate (-t in (19)) and a is the lower limit on the variance of an arbitrage 
portfolio. 
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If we assume that the market portfolio, as a well-diversified portfolio, 
cannot be grossly inefficient in a mean variance sense, and if we ignore 
ex ante-ex post distinctions, then we can use observed market data (see 
Friend [4] and Myers [9] for the data which follow) to obtain a rough 
estimate of the bound in (25). Over the period from January 1, 1962 to 
December 31, 1971 the yearly market return (Standard and Poor’s 
Composite Index) averaged 7.4 % and the risk free rate (prime corporates 
with 1 year to maturity) averaged 5.1 %. for a market risk premium of 

c = 2.3%. 

The sample variance of the market portfolio in this period was (0.123)2, 
and we will assume that no arbitrage portfolio earning the market risk 
premium could have had less than one-half the market variance. Hence, 

a = +(0.123j2, 

and from (25), 

f ( I/ui2)[Ei - p - ,diy12 < 2(0.023)2/(0.123)2. 
i=l 

The average residual variance in this period from regressions of asset 
returns on the market portfolio was about 2(0.123)2 and using this as a 
proxy for oi2, the average squared discrepancy is approximately 

average(E, - p - /3iy)2 < (l/n) 4(0.023)2. 

Taking the number of assets IZ to be the combined total of listed issues on 
the NYSE and the Amex on December 31, 1971, about 3000, the average 
absolute discrepancy is given by 

average 1 Ei - p - j&y I < 2 . 0.023/3000112 = 0.00084, 

or about 1 % of the market return of 7.4 %. 
Of course these estimates are very crude and are only intended to be 

indicative; assets with a high own variance will have a greater latitude for 
discrepancies than those with low own variances. Most importantly, 
though, to the extent that there is significant cross-sectional correlation 
across the ci terms, the addition of further factors should reduce the own 
variance terms, gz2, and improve the estimates. 
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III. GENERALIZATIONS AND CONCLUSIONS 

One of the strengths of Theorem II is that it does not require the 
stringent homogeneity of anticipations of the mean-variance theory. 
We are now obviously distinguishing between expectations, i.e., the 
E vector, and anticipations, the whole model (15). If other agents have the 
same ex ante expectations, but believe returns are generated in a different 
fashion, then (24) must still hold where /3 is that of the return generating 
model believed to hold by the Type B agent. Of course, this is a bit 
gratuitous since in this model, as in all others, it is necessary to translate the 
results into observable quantities and the usual ex ante-ex post identity 
becomes ambiguous with disparate anticipations. Even if all agents agree 
on (15) however, there is still considerable scope for disagreement on the 
underlying probability distributions. For example, if 8 represents a market 
or “GNP” factor, then as long as all agents agree on the impact of this 
factor on returns, through pi1 , they can hold a variety of views on the 
distribution of 8 without violating the basic arbitrage condition, (24). 
Similarly, agents can also disagree on the distribution of the idiosyncratic 
noise terms, Ca, without altering (24). The primary difficulty with the 
analysis arises when agents differ in their expectations, EY. Now the proof 
of Theorem II must be modified since, unless all Ev vectors are positive 
multiples of the same vector, we cannot be assured that the divergence 
of mYET to - co for 7 f v, implies that CYEY --f - co. This is a fruitful area 
for generalizations. 

It is also possible to weaken the condition that Ed be mutually uncor- 
related. For example, if the assets can be ordered so that & and cj are 
uncorrelated if 1 i - j j exceeds a given number, then the analysis is 
unchanged. In general, any weakening that permits a law of large numbers 
to hold should be sufficient, although weaker forms of the law would result 
in weaker approximation norms for the pricing relation (24). 

Lastly, it should be emphasized that (24) is much more of an arbitrage 
relation than an equilibrium condition and may be expected to be quite 
robust. Assumptions 4 and 5 served only to guarantee that the market 
return, 

would be uniformly bounded and this will hold in a wide class of dis- 
equilibrium situations. Rather then simply assuming that Em was bounded, 
we chose to make Assumptions 4 and 5 directly to see how sufficient 
conditions for a bounded Em would appear in alternative economic 
situations. For example, Assumption 4 can be weakened if, instead of 

6441313-2 
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having required all fi > 0, we had assumed that xi / Ei / was bounded, 
i.e., we had bounded the sum of the absolute proportions of wealth placed 
(or shorted) in all assets. This would also be sufficient to bound the 
market return. In practice, these are very weak conditions and easily 
satisfied.* 

In conclusion, we have set forth a rigorous basis for the arbitrage 
relation and arguments analyzed in Ross [14] (and [13]), and the con- 
ditions which are sufficient to support the theory have some intuitive 
appeal. On a less optimistic note, though, while significantly weakening 
the assumption that investors have identical (or homogeneous) anti- 
cipations, the arbitrage theory still requires essentially identical expec- 
tations and agreement on the fi coefficients if the identification of ex ante 
beliefs with ex post realizations is to provide empirically fruitful results. 
Jf this assumption is to be fundamentally weakened, this theory (and all 
others) will require a closer examination of the dynamics by which ex ante 
beliefs are transformed into ex post observations. Such a study properly 
lies in the domain of general disequilibrium dynamics and, in particular, 
should focus on the impact of information on markets. It is one of the 
most difficult and important areas for future research. 

8 A strong form of Theorem 2 can be obtained by assuming that the weighted sum 
of subjectively viewed expected portfolio returns 

Y L 

is uniformly bounded. This would permit us to delete Assumptions 4, 5, and even 3 
and, formally at least, would allow heterogeneous expectations. Alternatively, we 
could replace Assumption 5 with )/ Ev /I -C co, retain Assumption 4 (or the weaker form 
described in Section III) and drop Assumption 3. 

Furthermore, if agents agree on factors and if the actual ex post model generating 
returns is some convex combination (say wealth weighted, or, for that matter, any 
uniformly sup norm bounded linear operator) of the individual market ex ante models, 
then the basic arbitrage condition will be expressible in ex post observables and, as 
such, will be directly testable. See Ross [14] for a fuller discussion of these issues. None 
of this, however, is very satisfactory. For one thing, it is not clear what is the force of 
these boundedness conditions, particularly when the number of agents is typically 
much larger than the number of marketed assets. As an example, if we have two Type B 
agents with exactly divergent beliefs (in a sense, which can be made precise in special 
examples) then they can exactly offset each other. There is now no reason to expect 
(Fl), unlike (26), to be bounded simply because observed ex post return is bounded. 
For another, we must translate the theory into a statement about observables and this 
requires relating divergent subjective ex ante expectations to ex post ones via the 
“right” generating mechanism in a less ad hoc fashion. This is the problem posed in 
Section III and makes the “strong” version of Theorem II inadequate to stand alone. 
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APPENDIX 1 

In this appendix we prove the lemma referred to in the proofs of the 
paper. Define a sequence of n x k matrices, (P), by taking the first row, 
the first two rows, and so on of an infinite matrix with k columns. 

LEMMA I. Let (X”) be a sequence of n x k matrices and let (If”/ be a 
sequence of diagonal matrices with diagonal elements (h,), (h, , /I~), and so 
on where, for some h, hi 2 II > 0 for all i. Assume (3b, a) (VXn offhI rank) 

b’[Xn’HnXn]-l b >, a > 0. (Al) 

It jidlows that (3a* and A) 

and 
(X”a*)‘(X”a*) < A < 00 

a*‘6 = 1. 

Proof The result is trivial if X” is of less than full rank for all n. In 
addition, if XT” is of full rank for some n (2 k) then X’ is of full rank, 
ri > n, and we may assume that the sequence (X”) (n 2 k) is of full rank 
for all n. By positive definiteness X”‘H”X” is of full rank and (Al) holds. 

Consider the problem: 

subject to 
min(Xnzn)’ Hn(Xnz”), 

=“‘b = 1. 

The solution is given by 

where 

by (Al). Consequently, from the lower bound on (hi) we now obtain 

(Xnzn)‘(Xnzn) < A = l/ha < 00. 

Letting y - 71 == X”P implies that ~‘~‘y” < A. If Xis a full rank submatrix 
of X” then 

Xz” = y” 1 x, 

where yn I X is the corresponding subvector of y”, and since yn 1 X is 
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bounded in the norm it has a convergent subsequence. Letting ,I’* be its 
limit we must have z” --f a* z= - X-l I* J on the subsequence. It remains to 
show that (Vn)(X%*)‘(X%*) :< A. Assume to the contrary that for some fi 
(and, therefore, all n > ri) 

(X”a*)‘(X”a*) > A. 

Since zn -+ a* on a subsequence we would have the contradiction 

(x~zy’(x~~zy 3 (XaZy’(XfiZy > A for some n. 

It follows that (Vn) (X%*)‘(Xfla*) < A. In addition, since z”‘b = 1 
for all n we must also have a*‘6 = I. Q.E.D. 

APPENDIX 2 

In this appendix we discuss the relationship between convergence in 
quadratic mean (q.m.) and expected utility. The technical results can be 
found in Loeve [8] and Billingsley [l]. 

We can begin with a simple but powerful result. Let (x,J be a sequence 
of random variables with E{zE} = 0, and -?, + 0 (q.m.), i.e., az(k,) -+ 0. 

PROPOSITION, If U(.) is concave and bounded below (which implies that 
the domain of UC.) is left bounded), then 

E{U[p + m> - Wph 
Proqf By Fatou’s lemma 

lim inf E(U[p -+ S,]) 2 U(p), 

but by concavity 

hence 
lim E{U[p + XJ)- = U(p). 

Q.E.D. 

A problem arises when U/(,) is unbounded from below. About the 
weakest condition which assures convergence is uniform integrability 
(U.I.): 

5% “y I- I UCp + X,)1 dvn = 0, 
‘% 

where 7n is the distribution function of X, . 
. 
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A number of familiar conditions imply U.I. If the sequence U(p + rl,) 
is bounded below by an integrable function the Lebesque convergence 
theorem can be invoked or if (36 > 0) 

stp E{I U(p + xX’*) < 00, 

then the sequence is U.I. 
In general, then, the convergence criterion will depend on both the 

utility function and the random variables. It is possible, however, to find 
weak sufficient conditions on the random variables alone, by taking 
advantage of the structure of 2q,, but the condition that J?‘, = (l/n) xi Ed ; 
oi2 uniformly bounded and Zi , E”~ independent is not sufficient.s 

In the text, it is assumed that all sequences satisfy the U.I. condition, 
and therefore 

will imply that 
X, ---f a (9.m.) 

E{ U(X,)) -4 U(a). 
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