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Abstract We test for the presence of a systematic tail risk premium in the cross-

section of expected returns by applying a measure on the sensitivity of assets to extreme

market downturns, the tail beta. Empirically, historical tail betas help to predict the

future performance of stocks under extreme market downturns. During a market crash,

stocks with historically high tail betas suffer losses that are approximately 2 to 3 times

larger than their low tail beta counterparts. However, we find no evidence of a premium

associated with tail betas. The theoretically additive and empirically persistent tail betas

can help to assess portfolio tail risks.
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1 Introduction

Risk managers are concerned with the performance of portfolios in distress events,

the so-called tail events in the market. In this paper, we investigate the sensitivity of

assets to market risk under extremely adverse market conditions, i.e., their loading on

systematic tail risk. We estimate an additive measure of sensitivity to systematic tail risk,

the ‘tail beta’. We examine whether the estimated loadings on systematic tail risk help

to explain the cross-section of expected returns, and discuss their potential application

in risk management.

Systematic tail risk may play an important role in asset pricing. Arzac and Bawa

(1977) derive an asset pricing theory under the safety-first principle of Telser (1955). They

consider investors who maximise their expected return under a Value-at-Risk constraint.

In their framework, the cross-section of expected returns is explained by a ‘beta’ that is

different from the regular market beta in the Capital Asset Pricing Model (CAPM). If

investors are constrained by a Value-at-Risk with a sufficiently small probability, then

the aforementioned tail beta equals the beta of Arzac and Bawa (1977), assuming a linear

model under extremely adverse market conditions.

Our empirical results provide evidence that historical tail betas help to assess which

stocks will take relatively large hits during future market crashes. Starting with checking

the persistence, we find that the persistency of the classification of firms based on either

tail betas or regular market betas is comparable, even though tail betas are estimated

from a few tail observations only. Based on the tail beta classification, we find that stocks

with historically high tail betas suffer losses during market crashes that are on average

approximately 2 to 3 times larger than their low tail beta counterparts.

Further, we test whether the estimated tail betas help to explain the cross-section of

expected returns. That is, we test whether stocks with high tail betas are compensated

by a risk premium. Surprisingly, from the asset pricing tests we do not observe a premium

for stocks with high tail betas. We stress that this finding is not a consequence of losses

suffered during the recent financial crisis. The risk premium remains absent if this episode

is excluded from our sample. Hence, based on stock market data, the role of systematic
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tail risk in explaining the cross-section of expected returns seems to be limited.

These results are not explained by many other factors documented in the asset pricing

literature and are robust against methodological alterations. The results are established

within all size cohorts (Fama and French (2008)) and in the context of both equal- and

value-weighted portfolios. They are robust when controlling for downside beta, coskew-

ness, cokurtosis, idiosyncratic risk (Ang et al. (2006b) and volume (Gervais et al. (2001)).

The results are not explained by return characteristics related to past performance, such

as short-term reversal (Jegadeesh (1990)), momentum (Carhart (1997)) and long-term

reversal (De Bondt and Thaler (1985)).

We focus on tail betas, because regular market betas do not necessarily provide an

accurate description of the loading on systematic risk under all market conditions. It

is a well-known stylised fact that equity returns show higher correlations during periods

of high stock market volatility; see e.g. King and Wadhwani (1990), Longin and Solnik

(1995), Karolyi and Stulz (1996) and Ramchand and Susmel (1998). In addition, cor-

relations increase, especially during periods of severe market downturns as reported by

Longin and Solnik (2001), Ang and Bekaert (2002), Ang and Chen (2002) and Patton

(2004). This changing correlation structure may signal that the comovement of assets

with the market depends on market conditions.

Several studies address the changing comovement in the context of a non-linear rela-

tion between asset returns and market risk. In line with the theoretical work of Rubinstein

(1973) and Kraus and Litzenberger (1976), one strand of literature estimates the relation

between asset returns and market risk with higher order approximations. Among others,

Harvey and Siddique (2000) and Dittmar (2002) find that coskewness and cokurtosis play

a role in asset pricing, respectively. However, room for extensions with additional higher

moments may be limited, because the heavy tails observed in stock returns provide evi-

dence that further higher moments may not exist; see Mandelbrot (1963) and Jansen and

De Vries (1991).

An alternative strand of literature focuses on the comovement of asset returns with the

market under specific market conditions. In line with the theory in Bawa and Lindenberg
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(1977), several studies investigate the downside beta, which is defined as the market beta

conditional on below average or below zero market returns; see e.g. Price et al. (1982),

Harlow and Rao (1989) and Ang et al. (2006a). Our tail beta fits within this latter

strand of literature, because it focuses on comovement with the market return under

specific market conditions. However, in contrast to the downside beta, the tail beta

measures comovement with the market if market downturns are extreme.

Our study is related to the empirical asset pricing literature on tail risks. A few

studies focus on the role of tail risk in the cross-section of expected return, irrespective of

its relation with market risk; see e.g. Bali et al. (2009), Huang et al. (2012) and Cholette

and Lu (2011). Alternatively, Kelly (2011) constructs an index on the level of tail risks

in the market and obtains ‘tail risk betas’ for individual assets by regressing asset returns

on innovations in this index. These betas can be considered as a tail equivalent of the

volatility betas of Ang et al. (2006b), which measure the comovement of stock returns

with innovations in market volatility. In contrast to the ‘tail risk beta’ of Kelly (2011),

our ‘tail beta’ can be considered as a tail equivalent of the market beta.

The expression ‘tail beta’ appears in the literature with other meanings. For example,

De Jonghe (2010) estimates ‘tail betas’ by applying a tail dependence measure from Poon

et al. (2004) on stock returns. Spitzer (2006) and Ruenzi and Weigert (2012) examine

its asset pricing power. This tail dependence measure is defined as the probability of

an extreme downward movement of the asset, conditional on the occurrence of a market

crash. Hence, instead of measuring the magnitude of the comovement, this measure has

the attributes of a conditional probability. Further, Bali et al. (2011) estimate ‘hybrid

tail betas’. Their aim is to capture the covariance of the asset and the market, given an

adverse return on the asset.

Compared to these measures, the tail beta we estimate shares two appealing features

with the regular market beta. First, its interpretation as a measure of comovement with

the market is in absolute terms. That is, on a day that the market suffers a loss of

10%, an asset with a tail beta of 2 is expected to suffer a downward movement of 20%.

Second, the tail beta we estimate is an additive measure of tail risk. In other words,
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the tail beta of an investment portfolio is the weighted average of the tail betas of the

individual assets. Consequently, the estimated tail betas provide a clear insight into how

each asset contributes to the systematic tail risk of a portfolio, which is treated in the

risk management section.

2 Theory

To define the tail beta, we first introduce a linear model that decomposes asset re-

turns under extremely adverse market conditions into a systematic and an idiosyncratic

component. We denote the return on asset j and the market portfolio as Rj and Rm. The

excess return on asset j and the market are given by Re
j = Rj −Rf and Re

m = Rm −Rf ,

where Rf is the risk-free rate. The following model relates the asset excess return to large

losses on the market portfolio

Re
j = βT

j R
e
m + εj, for Re

m < −V aRm(p̄), (2.1)

where εj denotes the idiosyncratic risk that is uncorrelated with Re
m under the condition

Re
m < −V aRm(p̄) and Eεj = 0. The V aRm(p̄) denotes the Value-at-Risk (VaR) of the

excess market return with some low probability p̄ such that Pr(Re
m ≤ −V aRm(p̄)) = p̄;

in other words, it is the loss on the market that is exceeded with probability p̄. The

parameter βT
j measures the sensitivity to systematic tail risk and will be defined as the

‘tail beta’.

The linear tail model in (2.1) specifies the comovement between the asset and the

market excess return only under extremely adverse market conditions. Nevertheless,

safety-first investors do not need any further assumptions to value each asset according

to the asset pricing theory developed by Arzac and Bawa (1977). In particular, given the

linear tail model in (2.1), we show that the beta that determines expected returns in the

asset pricing theory of AB1977 is identical to the tail beta.

The asset pricing theory of AB1977 builds on the assumption that investors maximise

the expected return while limiting the probability of suffering a particularly large loss
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below a predetermined admissible level p.1 In other words, investors maximise the ex-

pected return under a VaR constraint. Under this objective function, AB1977 prove in a

distribution-free setup that the equilibrium price for any asset j is given by

E(Re
j) = βAB

j E(Re
m), (2.2)

where the parameter βAB
j can be derived as (see Appendix A)

βAB
j =

E(Re
j |Re

m = −V aRm(p))

−V aRm(p)
. (2.3)

The parameter βAB
j in equation (2.3) is determined by the asset’s contribution to the

VaR of the market portfolio with a probability level equal to the admissible probability

p.

Given the linear tail model in (2.1), suppose that the investors care about sufficiently

large losses, such that the admissible probability p is smaller than the p̄ in the linear tail

model. We can then express the βAB
j in (2.3) as

βAB
j =

E(βT
j R

e
m + εj|Re

m = −V aRm(p))

−V aRm(p)

= βT
j +

E(εj)

−V aRm(p)

= βT
j .

Hence, we obtain that the tail beta, βT
j , is identical to the beta in the AB1977 asset

pricing theory, βAB
j . Consequently, given the linear tail model in (2.1), the expected

returns of assets under the safety-first framework depend on their tail betas.

1The initial safety-first principle introduced by Roy (1952) assumes that agents minimise the prob-
ability of suffering a large loss. AB1977 adapt the formulation by Telser (1955), which assumes that
agents do not want the probability of suffering a particularly large loss to exceed a pre-specified level.
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3 Methodology

Our objective is to test whether assets with relatively high tail betas earn an additional

systematic tail risk premium. For that purpose, we collected daily and monthly data on

NYSE, AMEX and NASDAQ stocks of non-financials between July 1963 and December

2010 from the Center for Research in Security Prices. In addition, we collected the risk-

free rates and the excess returns on the market portfolio from the data library section on

Kenneth French’s website.

We estimate firm specific tail betas at the start of each month between July 1968 and

December 2010. A potential difficulty with the estimation of tail betas is the low number

of observations that correspond to extremely adverse market conditions. Researchers

often estimate market betas based on the past 60 monthly returns. Such a low number of

observations is insufficient for our purpose of estimating tail betas. We therefore use daily

returns from the past 60 months in our estimates, which corresponds to approximately

1,250 days.

We estimate tail betas using the estimation methodology based on Extreme Value

Theory (EVT) developed by Van Oordt and Zhou (2011). The basic assumption of

this approach is that the market and asset returns are heavy-tailed with the following

expansion on the tail of their distribution functions:

Pr(Re
m < −u) ∼ Amu

−αm and Pr(Re
j < −u) ∼ Aju

−αj , as u → ∞. (3.1)

The parameters αm and αj are called the tail indices, and the parameters Am and Aj

are the scales. The idiosyncratic risk, εj, and the market risk, Re
m, are assumed to be

independent. The linear tail model in (2.1) induces a dependence structure between

extremely adverse market returns and the asset returns. The tail beta is estimated by

exploiting the tail dependence structure and using the observations in the ‘tail region’

only. With the number of observed returns denoted by n, only the k lowest returns are
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used in the estimation.2 The estimator of the tail beta is given as

β̂T
j := ̂τj(k/n)

1/α̂m ̂V aRj(k/n)

̂V aRm(k/n)
, (3.2)

with four components obtained as follows. First, the tail index αm can be estimated from

the k highest market losses with the so-called Hill estimator proposed by Hill (1975).3

Consider the losses X
(m)
t = −Re

m,t, for t = 1, · · · , n. By ranking them as X
(m)
n,1 ≤ X

(m)
n,2 ≤

· · · ≤ X
(m)
n,n , the Hill estimator is calculated as

1

α̂m

=
1

k

k∑
i=1

logX
(m)
n,n−i+1 − logX

(m)
n,n−k. (3.3)

Second, the τj(k/n) parameter can be estimated non-parametrically by a counting mea-

sure

̂τj(k/n) :=
1

k

n∑
t=1

1{
X

(j)
t >X

(j)
n,n−k and X

(m)
t >X

(m)
n,n−k

}, (3.4)

where X
(j)
n,n−k is the (k + 1)−th highest loss on the asset, and where X

(j)
t := −Re

j,t,

t = 1, · · · , n. This parameter characterises the tail dependence between the market and

the asset; see e.g. De Haan and Ferreira (2006). Finally, the V aRs of the market and

asset return at probability level k/n are estimated by their (k + 1)−th highest losses.4

At the end of every estimation window we rank the firms based on their tail betas

and construct five portfolios, each of which contains the same number of stocks. To

2Theoretically, the EVT approach defines k := k(n) as an intermediate sequence such that k :=
k(n) → ∞ and k/n → 0 as n → +∞. In practice, these conditions on k are not relevant for a finite
sample size n. For low values of k, the estimate exhibits a large variance, while for high values of k,
it bears a potential bias, because observations from relatively regular market conditions are included
in the estimation. Practically, we choose k = 50 days in each estimation window of 60 months, which
corresponds to a k/n-ratio of roughly 4%. The results are robust if tail betas are estimated with k = 30.

3The EVT approach needs the weak condition that αj > 1
2αm. This condition requires a lower

bound on the tail index of asset excess returns. Empirical research usually finds that αm is around 4; see
e.g. Jansen and De Vries (1991), Loretan and Phillips (1994) and Poon et al. (2004). In line with these
results, we observe α̂m = 3.5 as an average estimate for the market. Given these findings, the condition
is equivalent to αj > 2, which is satisfied if the excess returns of individual assets have finite variance.

4An alternative approach to estimate tail betas involves performing a regression on the observations
corresponding to the k largest market losses. For example, Post and Versijp (2007) provide estimates of
tail beta from regressions conditional on market returns below −10%. Our results are robust for using
the conditional regression approach. However, the estimates from this approach yield a less persistent
ranking of firms over time and result in a smaller return difference between high and low tail beta stocks
in case of extreme market downturns.
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maximise the potential variation after controlling for regular market risk, we also sort

stocks based on their tail beta spreads, i.e., the spread between tail betas and regular

market betas.5 In the portfolio formation procedure we exclude firms that do not qualify

according to the following two conditions. First, stocks should not report zero returns

on more than 60% of the trading days in the estimation window. We use this criterion

to avoid our results being distorted by daily returns of thinly traded stocks. Second, the

stock must be trading at a price above 5 USD on the last day of the estimation period.

We use this criterion to exclude penny stocks that potentially represent firms in severe

financial distress.6 In summary, portfolio formation occurs at the start of each month

using estimates based on returns from the past 60 months. The holding period is the first

month after the estimation window.

After constructing the portfolios, we calculate monthly portfolio returns. The excess

return is calculated by averaging the excess returns on individual stocks in each portfo-

lio using both equal (EW) and value weights (VW). Further, using several benchmark

models, we calculate risk-adjusted returns for individual stocks as follows:

R∗
j,t = Rj,t −Rf,t −

m∑
k=1

β̂j,kFk,t, (3.5)

where Rj,t is the monthly return on stock j at time t, Rf,t is the risk-free rate, and

Fk,t denotes the of k-th of m risk factors in the benchmark model. We estimate the

factor loadings, β̂j,k for individual stocks using regressions on monthly returns in the 60-

month estimation window preceding t. The risk-adjusted returns of the tail beta spread

portfolios are calculated by averaging the risk-adjusted returns of the individual stocks

in each portfolio. Based on the constructed portfolio returns, we then construct the

zero-investment portfolio, which is obtained by taking a long position of 1 USD in the

portfolio with the 20% highest tail beta spreads, while taking a short position of 1 USD

in the portfolio with the 20% lowest spreads.

5In this respect we follow Ang et al. (2006a), who sort based on the spread between downside beta
and market beta.

6Empirically, historical tail betas do not provide much information about the performance of penny
stocks in future extreme market downturns. Including penny stocks in the analysis does not qualitatively
affect our conclusions.
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4 Results

4.1 Descriptive statistics

Table 1 reports the average of some descriptive statistics across the stocks in each

of the sorted portfolios. When sorting according to the estimated tail betas in panel

(a), we observe that stocks with high tail betas also tend to have high market betas

on average. There is a clear trend in the average market betas across the tail beta

portfolios. Trends with similar signs can be observed for the downside beta, the standard

deviation, the skewness and the excess kurtosis of the returns. These trends indicate

that stocks with high tail betas also tend to have higher values for other potential risk

measures. Interestingly, the tail dependence measure, τ , which is an ingredient of the

tail beta calculation, remains on average at a relatively constant level across the different

portfolios. Apparently, there is not a very strong relation between the firms that comove

more with the market in extremely adverse market conditions, and those firms that have

a high level of tail dependence. Finally, high tail beta firms are relatively small in terms

of market capitalization, but tend to have higher trading volumes.

Most trends fade or reverse if we sort on the spread between the tail beta and the

market beta in panel (b). Apparently, many of the aforementioned trends are rather

driven by high regular market betas than by high tail betas. After sorting on the spread

we observe that both the market beta and the downside beta increase as the spread

decreases. Further, a clear trend appears for coskewness. However, no strong trend

can be observed for the other return characteristics. The trend in trading volume is

also reversed: high spread firms are less frequently traded. The relation between the

tail beta and the market beta stress the importance of sorting on the spread between

tail beta and market beta. Moreover, the relation between the tail beta and other risk

measures, especially downside beta and coskewness, stresses the importance of performing

robustness checks in our asset pricing tests.
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Table 1: Descriptive statistics

Panel (a): sorting on βT High βT 4 3 2 Low βT

Return characteristics:
β̄ 1.70 1.32 1.10 0.91 0.62

βT − β 0.91 0.62 0.48 0.37 0.27
β̄DS 1.72 1.33 1.11 0.92 0.65

Standard deviation 18.30 13.70 11.12 9.33 7.40
Idiosyncratic volatility 15.20 11.40 9.25 7.77 6.34

τ̄ 0.22 0.21 0.21 0.20 0.15
Skewness 0.81 0.52 0.38 0.31 0.35

Coskewness -0.04 -0.04 -0.04 -0.04 -0.03
Excess kurtosis 2.55 1.80 1.52 1.38 1.65

Cokurtosis 0.03 0.06 0.09 0.11 0.10
Firm characteristics:

Market capitalization (bln USD) 0.74 1.19 2.15 3.02 2.66
Volume (mln shares) 10.21 8.05 7.97 7.74 5.25

Panel (b): sorting on βT − β High βT − β 4 3 2 Low βT − β
Return characteristics:

β̄ 0.91 1.01 1.05 1.16 1.54

βT − β 1.32 0.72 0.47 0.25 -0.11
β̄DS 1.08 1.05 1.05 1.13 1.42

Standard deviation 14.66 11.58 10.54 10.49 12.59
Idiosyncratic volatility 13.03 9.89 8.76 8.48 9.81

τ̄ 0.19 0.21 0.21 0.20 0.18
Skewness 0.71 0.44 0.37 0.36 0.51

Coskewness -0.10 -0.06 -0.03 -0.02 0.02
Kurtosis 2.22 1.51 1.46 1.53 2.18

Cokurtosis 0.11 0.05 0.05 0.07 0.10
Firm characteristics:

Market capitalization (bln USD) 0.79 2.03 2.60 2.52 1.81
Volume (mln shares) 4.69 7.30 8.24 8.68 10.32

Note: At the start of each month t between July 1968 and Dec 2010, we estimate tail betas of NYSE,
AMEX and NASDAQ stocks by applying the EVT approach in (3.2) on daily returns from the past 60
months prior to t. Market betas are estimated based on monthly returns from the same horizon. We
exclude stocks with more than 60% zero daily returns in the 60 months prior to t, and stocks with a
price below 5 USD at the end of month t − 1. Stocks are sorted into five quintiles: panel (a) considers
quintiles sorted on tail betas, panel (b) considers quintiles sorted on the spread between the tail beta
and the market beta. The reported numbers are averages for the stocks in each sort. We first average
across firms in each month t, and then average over the 510 months in the sample. The market beta,
downside beta, standard deviation, idiosyncratic volatility, skewness, coskewness, excess kurtosis and
cokurtosis are calculated from the 60 monthly returns prior to t. The market beta is reported as β̄. The
spread between tail beta and market beta is reported as βT − β. Downside beta, β̄DS , is estimated by
a regression conditional on below average market returns. Idiosyncratic volatility is calculated as the
standard deviation of the residuals obtained from regressing individual stock returns on the FF3 factors.
The tail dependence measure, τ , is based on daily returns from the 60 months prior to t and calculated
following the estimator in equation (3.4), with k = 50. Coskewness and Cokurtosis are calculated
following (5.1) and (5.2). Market capitalization and trading volume are provided at the end of month
t− 1.
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4.2 Persistence

First, we verify whether the estimates of tail beta obtained from historical data are

persistent over time. In the absence of such persistence, estimating tail betas based on

historical data would merely have a descriptive function, and would provide no insight

in future comovements during adverse market conditions. To investigate this issue we

provide transition matrices in Table 2. The transition matrices in Table 2, panel (a) are

based on firm tail betas and respectively their 12 month lagged value. One concern is

that the potential persistence observed in transition matrices based on 12 month lagged

values is spurious because those transition matrices are based on tail beta estimates from

two overlapping data samples. To address this issue, we also construct transition matrices

based on 60 months lagged data samples in Table 2, panel (b). Tail betas are estimated

following both the EVT approach and the conditional regression approach. The table

also provides a similar matrix for market betas estimated from a regression with the

CAPM as benchmark model. Higher numbers along and around the diagonal point into

the direction of a more persistent sorting.

In Table 2 we observe two patterns from the transition matrices based on 12 month

lagged values. First, the numbers along the diagonal of the transition matrices are higher

if the matrix is constructed from tail betas estimated with the EVT approach. This

suggests that the EVT approach provides a more persistent classification of firms based

on the sensitivity to systematic tail risk than the conditional regression approach. The

higher persistence is a potential consequence of the lower variance associated with the

EVT approach. Second, the numbers along and around the diagonal of the transition

matrices based on tail beta are in general above those in the transition matrix constructed

from market betas. This pattern suggest that if one is inclined to believe that historical

market betas contain information about future comovement with the market, then there

seems to be no reason to worry about the information contained by historical tail betas

on future comovement with the market under extremely adverse market conditions. Not

surprisingly, the overall level of the numbers on the diagonal is lower in the transition

matrices based on 60 month lagged values. However, the observed patterns remain: tail
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Table 2: Transition matrices
Panel (a): 12 months t+ 12

EVT approach High βT 4 3 2 Low βT

High βT 80 18 2 0 0
4 15 62 21 2 0

t 3 2 16 59 21 2
2 0 2 17 64 16

Low βT 0 1 2 14 83
Conditional approach High βT 4 3 2 Low βT

High βT 74 18 5 2 1
4 18 52 21 7 2

t 3 5 20 48 22 6
2 2 7 21 50 20

Low βT 1 2 6 20 71
Market beta High β 4 3 2 Low β

High β 76 20 3 1 0
4 17 54 23 5 1

t 3 3 21 51 22 3
2 1 4 21 56 18

Low β 0 1 3 17 79

Panel (b): 60 months t+ 60
EVT approach High βT 4 3 2 Low βT

High βT 49 29 14 6 2
4 21 30 27 17 6

t 3 9 18 30 30 13
2 4 11 23 35 26

Low βT 2 4 10 22 62
Conditional approach High βT 4 3 2 Low βT

High βT 34 24 18 14 10
4 21 23 21 19 15

t 3 15 20 22 23 20
2 12 18 22 24 25

Low βT 8 14 19 25 33
Market beta High β 4 3 2 Low β

High β 37 25 17 11 6
4 20 26 25 19 10

t 3 12 22 26 25 15
2 8 15 24 28 25

Low β 4 8 14 26 52

Note: The table provides transition matrices based on 12 month (panel a) and 60 month (panel b) lagged
values. At the start of each month t between July 1968 and Dec 2009, we estimate tail betas of NYSE,
AMEX and NASDAQ stocks by applying the EVT approach in (3.2) on past daily returns from the 60
months prior to t. Stocks are sorted into five quintiles according to the tail beta estimates. We exclude
stocks with more than 60% zero daily returns in the 60 months prior to t, and stocks with a price below
5 USD at the end of month t− 1. We also determine the allocation of each firm in the tail beta quintiles
at the start of month t+12. For each tail beta quintile at time t we calculate the percentage of surviving
firms allocated in each tail beta quintile at the start of month t + 12. The results in the transition
matrices are averages over time.
We repeat the procedure for tail betas obtained from the conditional regression approach by performing
a regression on daily returns conditional on the 50 worst market returns from the 60 months prior to t.
We also repeat the procedure for market betas obtained from a regression on monthly returns from the
60 months prior to t with the CAPM as benchmark model. The lower panel provides the same matrices
after sorting at the start of month t (between July 1968 and Dec 2005) and at the start of month t+60.
Higher numbers along and around the diagonal of the transition matrices point into the direction of a
more persistent sorting.
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betas from the EVT approach provide a more persistent sorting of firms; and the sorting

of firms based on tail beta is not less persistent than the sorting of firms on market beta.

4.3 Asset pricing tests

Table 3 presents the baseline asset pricing result on the sorted portfolios. The unad-

justed average excess return on the zero-investment portfolio is slightly below, but not

significantly different from zero. For returns adjusted with the CAPM and the Fama and

French (1993) three factor model (FF3), the return on the zero-investment portfolio is

slightly above, but still not significantly different from zero. This result holds for both

equal and value weighted portfolios (the t-statistics are between 0.6 and 1.0). Also if

we repeat our procedure within presorted size cohorts and calculate the FF3-adjusted

returns, the absence of any significant risk premium remains prevalent. To summarize,

we cannot reject the null hypothesis that having an exposure on systematic tail risk did

not receive an additional (ex post) risk premium in the market.

The results so far are rather pessimistic about the role of systematic tail risk in

explaining the cross-section of expected returns. One potential reason for not finding any

significant results might be the failure to reliably estimate a forward looking measure of

the sensitivity to systematic tail risk. The definition of tail beta only implies that high tail

beta stocks suffer from large in-sample losses under extremely adverse market conditions.

Nevertheless, the results in the transition matrices seem to suggest that the sorting based

on estimates of tail beta is quite persistent over time. This persistency hints, but does

not guarantee that historical tail betas capture future sensitivity towards systematic tail

risk. To test this explicitly, we take the (risk-adjusted) portfolio returns from the last

exercise, and focus on the months with an excess market return, Re
m,t, lower than −5%.

We consider these 54 months as representing ‘extremely adverse market conditions’.

Table 4 reports the results for the subsample of months with extremely adverse market

conditions. The first line in Table 4 reports the average historical returns on portfolios

sorted on tail beta alone. Across the portfolios, we observe a strong downward sloping

trend in the average losses if one moves from the portfolios with the highest tail betas

13



Table 3: General asset pricing results
Sort: High βT 4 3 2 Low βT (5) - (1)

R̄e
p EW 0.42 0.72 0.75 0.70 0.66 -0.24

(1.1) (2.3) (2.8) (3.0) (3.6) (-0.8)
VW 0.37 0.53 0.45 0.40 0.50 -0.13

(0.9) (1.6) (1.8) (1.9) (3.1) (-0.4)
Sort: High βT − β 4 3 2 Low βT − β (5) - (1)

R̄e
p EW 0.56 0.69 0.67 0.69 0.65 -0.09

(1.8) (2.6) (2.7) (2.7) (2.2) (-0.6)
VW 0.44 0.53 0.48 0.45 0.44 -0.01

(1.5) (2.3) (2.3) (2.1) (1.7) (-0.0)
R̄∗

CAPM,p EW 0.24 0.31 0.27 0.24 0.04 0.20
(1.4) (2.8) (3.0) (2.3) (0.2) (0.9)

VW 0.11 0.19 0.13 0.02 -0.12 0.22
(0.7) (2.3) (2.5) (0.3) (-1.0) (1.0)

R̄∗
FF3,p EW 0.03 0.10 0.05 0.03 -0.09 0.11

(0.3) (2.3) (1.2) (0.6) (-0.8) (0.6)
VW 0.11 0.17 0.08 0.02 -0.03 0.14

(0.9) (2.4) (1.4) (0.4) (-0.3) (0.7)
R̄∗

FF3,p EW Small -0.15 0.14 0.18 0.06 0.05 -0.19
2 -0.03 0.03 0.11 0.06 -0.08 0.05
3 0.09 0.03 0.05 0.05 -0.10 0.19
4 0.06 0.13 0.07 0.00 -0.10 0.16

Large 0.14 0.04 0.01 -0.09 -0.08 0.22
Avg 0.02 0.07 0.08 0.02 -0.06 0.08

t-stat Small (-0.9) (1.3) (2.1) (0.7) (0.4) (-0.8)
2 (-0.3) (0.4) (1.4) (0.7) (-0.5) (0.2)
3 (0.7) (0.5) (0.8) (0.6) (-0.8) (0.9)
4 (0.5) (1.7) (1.2) (-0.0) (-0.8) (0.9)

Large (1.5) (0.8) (0.1) (-1.4) (-0.8) (1.3)
Avg (0.2) (1.6) (1.9) (0.3) (-0.6) (0.5)

R̄∗
FF3,p VW Small -0.23 0.11 0.14 0.03 0.04 -0.27

2 -0.04 -0.01 0.09 0.06 -0.08 0.03
3 0.11 0.06 0.04 0.04 -0.11 0.22
4 0.06 0.14 0.06 -0.02 -0.09 0.14

Large 0.17 0.15 0.05 -0.09 -0.03 0.20
Avg 0.01 0.09 0.08 0.00 -0.05 0.07

t-stat Small (-1.4) (1.2) (1.6) (0.3) (0.3) (-1.2)
2 (-0.4) (-0.1) (1.1) (0.6) (-0.5) (0.1)
3 (0.9) (0.8) (0.5) (0.5) (-0.8) (1.0)
4 (0.5) (2.0) (1.0) (-0.2) (-0.7) (0.8)

Large (1.8) (2.0) (0.8) (-1.3) (-0.2) (1.1)
Avg (0.1) (1.9) (1.8) (0.1) (-0.5) (0.4)

Note: At the start of each month t between July 1968 and Dec 2010, we estimate tail betas for NYSE,
AMEX and NASDAQ equities by applying the EVT approach in (3.2) on past daily returns from the
60 months prior to t. Market betas are estimated based on monthly returns from the same horizon.
We form 5 equal weighted (EW) and value weighted (VW) portfolios by sorting on either the tail beta
(the first row) or the spread between tail beta and market beta (from the second row onwards) and
construct a zero-investment portfolio. We calculate risk-adjusted returns by applying (3.5) on monthly
stock returns at time t, where the loadings on the risk factors in the benchmark model are estimated for
each stock by an OLS regression on monthly returns from the 60 months prior to t.
The first and second row report the average excess portfolio return, R̄e

p. The third and fourth rows, report

the average CAPM- and FF3-adjusted portfolio returns, R̄∗
CAPM,p and R̄∗

FF3,p. The fifth and sixth rows
report the average FF3-adjusted returns after presorting the equities in five size cohorts and then sorting
on the tail beta spread within each size cohort, where size is measured by market capitalization at the
end of month t− 1. Newey-West t-statistics are reported in parentheses.
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Table 4: Results under extremely adverse market conditions (Re
m,t < −5%)

Sort: High βT 4 3 2 Low βT (5) - (1)
R̄e

p EW -13.62 -10.20 -8.39 -7.03 -4.94 -8.68
(-14.9) (-12.4) (-10.9) (-10.2) (-8.8) (-11.8)

VW -14.22 -11.46 -9.17 -7.13 -5.12 -9.10
(-15.0) (-15.6) (-15.7) (-13.4) (-10.4) (-9.5)

Sort: High βT − β 4 3 2 Low βT − β (5) - (1)
R̄e

p EW -9.93 -8.49 -8.08 -8.26 -9.42 -0.51
(-11.2) (-11.0) (-12.1) (-12.6) (-13.5) (-0.9)

VW -9.58 -7.59 -7.69 -8.10 -9.26 -0.33
(-13.0) (-12.2) (-16.6) (-16.8) (-15.9) (-0.4)

R̄∗
CAPM,p EW -2.38 -0.07 0.76 1.64 3.70 -6.07

(-3.9) (-0.2) (2.3) (4.8) (8.1) (-8.7)
VW -3.18 -1.03 -0.36 0.67 2.63 -5.81

(-7.3) (-3.1) (-1.7) (2.7) (6.8) (-8.7)
R̄∗

FF3,p EW -2.52 -0.31 0.44 1.19 3.17 -5.69
(-7.8) (-1.7) (3.3) (6.1) (9.2) (-9.5)

VW -2.51 -0.71 -0.17 0.78 2.40 -4.90
(-6.2) (-2.3) (-0.8) (3.3) (6.4) (-8.0)

R̄∗
FF3,p EW Small -3.83 -1.07 0.66 1.36 3.59 -7.43

2 -3.15 -0.53 0.31 1.35 3.91 -7.05
3 -2.24 -0.52 0.57 1.20 3.16 -5.40
4 -1.54 -0.08 0.46 1.34 2.90 -4.44

Large -1.52 -0.18 0.56 0.84 2.34 -3.87
Avg -2.46 -0.48 0.51 1.22 3.18 -5.64

t-stat Small (-8.3) (-3.1) (2.7) (5.1) (9.1) (-10.4)
2 (-7.1) (-1.9) (1.4) (4.6) (8.2) (-9.0)
3 (-5.5) (-2.1) (2.4) (4.9) (8.2) (-7.8)
4 (-4.1) (-0.3) (2.0) (5.2) (7.5) (-7.4)

Large (-4.5) (-0.9) (2.7) (3.3) (6.5) (-7.6)
Avg (-7.6) (-2.8) (3.7) (6.3) (9.3) (-9.6)

R̄∗
FF3,p VW Small -3.92 -1.16 0.58 1.35 3.54 -7.45

2 -3.15 -0.45 0.25 1.38 3.87 -7.02
3 -2.15 -0.44 0.64 1.20 3.14 -5.29
4 -1.57 -0.13 0.51 1.34 2.87 -4.44

Large -1.59 -0.12 -0.08 0.48 2.30 -3.89
Avg -2.48 -0.46 0.38 1.15 3.14 -5.62

t-stat Small (-8.7) (-3.4) (2.5) (4.9) (9.1) (-10.7)
2 (-7.4) (-1.6) (1.1) (4.7) (8.2) (-9.1)
3 (-5.3) (-1.8) (2.5) (4.7) (8.2) (-7.9)
4 (-4.1) (-0.5) (2.2) (5.3) (7.6) (-7.4)

Large (-4.0) (-0.5) (-0.3) (1.8) (5.7) (-6.4)
Avg (-8.1) (-2.8) (3.0) (6.3) (9.5) (-9.9)

Note: We calculate the average of the excess returns and risk-adjusted returns conditional on extremely
adverse market conditions for the portfolios sorted on tail beta (the first row) or the spread between
the tail beta and the market beta (from the second row onwards). From July 1968 and Dec 2010, we
consider the returns from the 54 months in which the market factor lost at least 5% of its value, i.e.,
Re

m,t < −5%.

The first row and second row report the average excess portfolio return, R̄e
p. The third and fourth row,

report the CAPM- and FF3-adjusted portfolio return, R̄∗
CAPM,p and R̄∗

FF3,p. The fifth and sixth row
report the average FF3-adjusted returns after presorting the equities in five size cohorts based on market
capitalization at the end of month t− 1 and then sorting on the tail beta spread within each size cohort.
Standard t-statistics are reported in parentheses.
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to those with low tail betas. For the high tail betas we find an average loss of 13.62%,

while the average loss for the portfolio with the lowest tail beta loadings equals to 4.94%.

However, this result may merely reflect the underlying difference in terms of the (regular)

market betas. Consequently, we continue to the portfolios sorted on the spread between

tail beta and market beta.

Considering sorts based on the spread between tail and market beta, the difference in

average losses, R̄e
p, seems to disappear. However, from the descriptive statistics we know

that portfolios with a relatively high spread tend to have a low market beta. Consequently,

we consider the risk-adjusted returns using the CAPM as benchmark model, R̄∗
CAPM,p.

We find that portfolios with a high positive spread between tail beta and market beta

strongly underperform during extremely adverse months, while portfolios with a negative

spread between tail beta and market beta strongly outperform. The zero investment

portfolio, with a long exposure on high spread stocks and a short exposure on low spread

stocks, yields significant additional losses during extremely adverse months. The CAPM-

adjusted returns during extremely adverse months add up to −6.07% and −5.81% for

respectively the value and equal weighted portfolios (t-statistics around −8.7). The FF3-

adjusted returns do report similar results. The trend in the losses and the significance of

the results are also robust among all size cohorts. The least significant t-statistic for the

zero investment portfolios is −6.4 for the value weighted portfolio based on large firms. To

summarize, from the results in Table 4 we find that stocks with a high spread between tail

beta and market beta strongly underperform during extremely adverse market conditions.

Hence, it seems implausible that the failure to establish a risk premium on tail beta stems

from its potential failure in capturing the future sensitivity to systematic tail risk.

Another potential reason for not observing the additional risk premium for systematic

tail risk comes from the double-edged sword impact of high tail betas. Although investors

may receive a premium during good times, large losses are suffered during extreme market

downturns. These large negative returns may partly cancel out the positive risk premium.

Hence, to test for the presence of a positive risk premium during the ‘business as usual’

months, we also exclude months that coincide with extremely adverse market conditions.
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Table 5 reports the baseline results for the subsample with the remaining 457 months.

Based on these results, we find that stocks with a high spread between tail and market

beta, do significantly outperform low spread stocks during ‘business as usual’ periods.

The average risk-adjusted premium with FF3 as benchmark model is 0.80% and 0.74%

per month for respectively the equal and value weighted portfolios (with t-statistics of

5.6 and 4.3). Although these results are weaker for the smallest firms, the results are

robust and significant among all size cohorts.

The asset pricing tests show that investors receive a significant premium for having

higher loadings on systematic tail risk during normal times. However, historically the

premium is barely enough to compensate for the additional losses that occur during

extremely adverse market conditions. This seems to be a reason why an additional risk

premium on systematic tail risk is not observed over the entire historical sample. To

conclude, from our results the additional role of systematic tail risk in explaining the

cross-section of expected return seems to be limited.

5 Robustness checks

In this section we test whether our results are robust, and, in particular, whether

other findings on asset pricing factors in the literature can explain part of our results.

In the first subsection, we extend the FF3 benchmark model with several other factors

that are relevant in the empirical asset pricing literature. Because Daniel and Titman

(1997) find evidence that return premia on stock characteristics are not necessarily due to

loadings on pervasive risk factors, we also check whether the findings on tail beta remain

robust after presorting on several stock characteristics. We report these results in the

second subsection. The final subsection provides robustness checks for deviations in the

methodology.7

7Throughout the robustness checks, we report the results for the value weighted portfolios. For most
robustness checks the t-statistics for the equal weighted zero investment portfolios are above those for
the value weighted portfolios. Consequently, the reported significance of the premium during normal
times and the significance of the loss during adverse market conditions can usually be considered to be
at the conservative side.
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Table 5: Results under usual market conditions (Re
m,t ≥ −5%)

Sort: High βT 4 3 2 Low βT (5) - (1)
R̄e

p EW 2.09 2.02 1.83 1.62 1.33 0.76
(6.4) (8.4) (9.1) (9.5) (10.2) (2.9)

VW 2.10 1.95 1.59 1.29 1.17 0.93
(6.3) (7.6) (8.0) (7.8) (8.8) (3.1)

Sort: High βT − β 4 3 2 Low βT − β (5) - (1)
R̄e

p EW 1.80 1.78 1.71 1.74 1.84 -0.04
(7.4) (8.8) (9.2) (9.1) (8.4) (-0.3)

VW 1.62 1.49 1.45 1.46 1.59 0.03
(7.2) (8.3) (9.0) (8.4) (7.8) (0.2)

R̄∗
CAPM,p EW 0.55 0.35 0.22 0.08 -0.40 0.94

(3.6) (3.5) (2.6) (0.9) (-3.2) (6.1)
VW 0.50 0.33 0.19 -0.06 -0.44 0.94

(3.8) (4.3) (3.6) (-1.0) (-4.6) (5.0)
R̄∗

FF3,p EW 0.33 0.15 0.01 -0.10 -0.47 0.80
(3.4) (3.1) (0.2) (-2.0) (-5.3) (5.6)

VW 0.42 0.28 0.11 -0.07 -0.32 0.74
(3.4) (3.8) (2.1) (-1.3) (-3.6) (4.3)

R̄∗
FF3,p EW Small 0.29 0.28 0.12 -0.09 -0.37 0.66

2 0.34 0.10 0.09 -0.09 -0.55 0.89
3 0.36 0.10 -0.01 -0.09 -0.49 0.85
4 0.24 0.15 0.03 -0.16 -0.46 0.70

Large 0.34 0.07 -0.06 -0.19 -0.37 0.70
Avg 0.31 0.14 0.03 -0.13 -0.45 0.76

t-stat Small (2.0) (2.7) (1.2) (-0.9) (-3.0) (3.8)
2 (2.5) (1.1) (1.0) (-1.1) (-4.7) (4.9)
3 (3.0) (1.3) (-0.1) (-1.2) (-4.5) (4.9)
4 (2.3) (2.0) (0.4) (-2.1) (-4.2) (4.5)

Large (3.8) (1.2) (-1.1) (-3.1) (-4.1) (5.0)
Avg (3.4) (2.8) (0.7) (-2.4) (-5.1) (5.4)

R̄∗
FF3,p VW Small 0.21 0.26 0.09 -0.13 -0.37 0.59

2 0.32 0.04 0.07 -0.10 -0.54 0.87
3 0.37 0.12 -0.03 -0.10 -0.50 0.87
4 0.25 0.17 0.01 -0.18 -0.44 0.68

Large 0.38 0.18 0.06 -0.15 -0.30 0.68
Avg 0.31 0.15 0.04 -0.13 -0.43 0.74

t-stat Small (1.4) (2.5) (0.9) (-1.3) (-3.0) (3.1)
2 (2.4) (0.5) (0.8) (-1.1) (-4.7) (4.7)
3 (3.0) (1.4) (-0.4) (-1.4) (-4.6) (5.0)
4 (2.3) (2.2) (0.2) (-2.2) (-4.0) (4.3)

Large (4.2) (2.8) (1.1) (-2.4) (-3.2) (4.4)
Avg (3.4) (3.2) (0.8) (-2.5) (-4.9) (5.2)

Note: For the portfolios sorted on tail beta (the first row) or the spread between the tail beta and
the market beta (from the second row onwards), we calculate average excess returns and average risk-
adjusted returns conditional on usual market conditions. From July 1968 and Dec 2010, we consider the
returns from the 456 months in which the market factor lost at most 5% of its value, i.e., Re

m,t ≥ −5%.

The first row and second row report the average excess portfolio return, R̄e
p. The third and fourth row,

report the CAPM- and FF3-adjusted portfolio return, R̄∗
CAPM,p and R̄∗

FF3,p. The fifth and sixth row
report the average FF3-adjusted returns after presorting the equities in five size cohorts based on market
capitalization at the end of month t− 1 and then sorting on the tail beta spread within each size cohort.
Standard t-statistics are reported in parentheses.
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Table 6: Summary of factors in the robustness checks

Factors Start End Obs Average return St.dev. Source
Market 196307 201012 570 0.45 4.53 K. French
SMB 196307 201012 570 0.27 3.17 K. French
HML 196307 201012 570 0.40 2.94 K. French

Momentum 196307 201012 570 0.72 4.35 K. French
Short-term Reversal 196307 201012 570 0.54 3.16 K. French
Long-term Reversal 196307 201012 570 0.33 2.54 K. French

Liquidity 196801 201012 516 0.49 3.55 R. Stambaugh
Downside beta 196807 201012 510 0.03 3.48 Calculations

Spread (βDS − β) 196807 201012 510 0.10 1.60 Calculations
Coskewness 196807 201012 510 -0.21 1.69 Calculations
Cokurtosis 196807 201012 510 0.02 1.79 Calculations

Note: For each risk factor in the robustness checks we provide some summary statistics. First we
report the start and the end date of its availability, and the number of observations. Then we report
the average excess return and its standard deviation. The last column reports the source of the risk
factor. ‘K. French’ and ‘R. Stambaugh’ refer to the personal homepages of Kenneth French and Robert
Stambaugh. ‘Calculations’ refer to the following procedure.
At the start of each month t between July 1968 and Dec 2010, we estimate the relevant risk measure for
all NYSE, AMEX and NASDAQ stocks based on monthly returns from the past 60 months prior to t.
Downside beta is estimated by a regression conditional on below average market returns. Coskewness
and Cokurtosis are calculated following (5.1) and (5.2). We exclude stocks that have more than 60%
zero daily returns in the 60 months prior to t and stocks with a price below 5 USD at the end of month
t− 1. Stocks are sorted based on the relevant risk measure. For downside beta (spread) and cokurtosis,
the return on the risk factor in month t is given by calculating the value weighted return of stocks with
estimates above the 70th percentile and subtract the value weighted return of stocks below the 30th
percentile in month t. For coskewness, we apply the same percentile rule, but subtract the return on the
portfolio with high coskewness from the return on the portfolio with low coskewness.

5.1 Extending the benchmark model

We extend the FF3 benchmark model with several other asset pricing factors doc-

umented in the literature. Table 6 reports some summary statistics and the sources of

these factors and the period over which each factor is available. The results of the robust-

ness checks are reported in Table 7 and Table 8. For each extended benchmark model

we report three lines of results: we report the average risk-adjusted return of the portfo-

lios, the average risk-adjusted return during adverse market conditions and the average

risk-adjusted return during usual periods.

In the asset pricing literature several alternative characteristics are used to document

potential nonlinearities in the relation between the asset and market return, such as

downside beta, coskewness and cokurtosis. First, we extend the FF3 benchmark model

with factors based on those nonlinearities. We construct corresponding risk factors using

the following methodology. In correspondence with our estimation window of market
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beta and tail beta, all return characteristics necessary to construct the risk factors are

calculated from returns during the past 60 months. Downside beta, βDS
j , is estimated

by performing an OLS regression conditional on the months in which the excess market

return is below its average across the estimation period. In accordance with Ang et al.

(2006a), we also calculate the downside beta spread, defined as βDS
j − βj. Following

Harvey and Siddique (2000), we calculate coskewness as

βSKD
j =

E[ϵj(R
e
m − R̄e

m)
2]√

E[ϵ2j ]E[(Re
m − R̄e

m)
2]
, (5.1)

where ϵj = Re
j − αj − βjR

e
m, the residual from a regression of the excess asset return on

the excess market return. Following Dittmar (2002), we also control for cokurtosis, which

we calculate as

βKUD
j =

E[ϵj(R
e
m − R̄e

m)
3]√

E[ϵ2j ](E[(Re
m − R̄e

m)
2])3/2

. (5.2)

For each characteristic we construct a risk factor by the difference between the value

weighted return of stocks with estimates above the 70th percentile and the value weighted

returns of stocks below the 30th percentile.8

After adding factors on downside beta or the downside beta spread to the FF3 bench-

mark model in Table 7, the results do not change much. During the extremely adverse

months, the additional loss of the tail beta spread portfolio remains at a level of about

−5%. The significance of the result decreases somewhat after controlling for downside

beta spread as the t-statistic increases from −8.0 to −7.3. The robustness of the results

is in line with the descriptive statistics. Within the sorts on the (spread of) tail beta, the

average regular market beta is very similar to the average downside beta. Consequently,

the risk-adjusted returns should not change much after adding downside beta factors.

We also extend the FF3 benchmark model with coskewness and cokurtosis factors.

From the descriptive statistics the portfolios with high tail beta spreads have, on average,

more negative estimates for coskewness. Adding the coskewness factor may thus poten-

8Following Harvey and Siddique (2000), we construct the zero investment portfolio for coskewness
from a short position in the stocks with coskewness estimates above the 70th percentile and a long
position in the stocks with coskewness estimates below the 30th percentile.
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Table 7: Risk factors capturing the nonlinear relation with the market

Factors Re
m,t High βT − β 4 3 2 Low βT − β (5) - (1)

FF3 All 0.17 0.18 0.06 0.02 0.06 0.10
+ Downside beta (1.2) (2.2) (1.0) (0.3) (0.5) (0.5)

Adverse -2.76 -1.06 -0.14 0.99 2.95 -5.71
(-6.1) (-3.1) (-0.6) (3.7) (6.5) (-7.5)

Usual 0.50 0.32 0.08 -0.09 -0.27 0.77
(3.9) (4.1) (1.4) (-1.6) (-2.8) (4.3)

FF3 All 0.16 0.24 0.10 0.02 -0.02 0.18
+ Spread (βDS − β) (1.1) (3.0) (1.6) (0.3) (-0.1) (0.8)

Adverse -2.48 -0.75 -0.17 0.79 2.55 -5.03
(-5.8) (-2.1) (-0.7) (3.0) (5.8) (-7.3)

Usual 0.46 0.35 0.13 -0.07 -0.31 0.77
(3.5) (4.3) (2.3) (-1.1) (-3.1) (4.1)

FF3 All 0.12 0.20 0.07 0.02 -0.02 0.14
+ Coskewness (0.9) (2.5) (1.1) (0.3) (-0.2) (0.6)

Adverse -2.72 -0.84 -0.27 0.71 2.62 -5.34
(-6.2) (-2.3) (-1.1) (2.6) (6.1) (-7.8)

Usual 0.44 0.32 0.11 -0.06 -0.32 0.76
(3.4) (4.0) (1.9) (-1.0) (-3.2) (4.1)

FF3 All 0.14 0.23 0.10 0.03 -0.01 0.14
+ Coskewness (0.9) (2.8) (1.5) (0.5) (-0.0) (0.6)
+ Cokurtosis Adverse -2.63 -0.93 -0.29 0.73 2.71 -5.34

(-5.7) (-2.7) (-1.1) (2.8) (6.4) (-7.6)
Usual 0.45 0.36 0.14 -0.05 -0.32 0.77

(3.4) (4.4) (2.4) (-0.8) (-3.0) (4.0)
FF3 All 0.15 0.27 0.10 0.05 0.03 0.12
+ Spread (βDS − β) (1.0) (3.2) (1.5) (0.8) (0.2) (0.5)
+ Coskewness Adverse -2.45 -0.88 -0.25 0.78 2.68 -5.13
+ Cokurtosis (-5.2) (-2.5) (-1.0) (3.1) (5.6) (-6.7)

Usual 0.45 0.40 0.14 -0.03 -0.27 0.72
(3.4) (4.8) (2.3) (-0.5) (-2.7) (3.8)

Note: At the start of each month t between July 1968 and Dec 2010, we estimate tail betas for NYSE,
AMEX and NASDAQ equities by applying the EVT approach in (3.2) on past daily returns from the
60 months prior to t. Market betas are estimated based on monthly returns from the same horizon.
We form 5 value weighted (VW) portfolios by sorting on the spread between tail beta and market beta
and construct a zero-investment portfolio. We calculate risk-adjusted returns by applying (3.5) on the
monthly stock return at time t, where the loadings on the risk factors in the benchmark model are
estimated for each stock by an OLS regression on monthly returns from the 60 months prior to t. Three
lines of results are reported for each robustness check. First, the average risk-adjusted return across
all months; second, the average risk-adjusted return across months with an excess market return below
−5%; third, the average risk-adjusted return across the months with market returns above −5%.
The first row reports results after adding the downside beta factor to the FF3 benchmark model. The
second row reports the results after adding the factor based on the spread between downside beta and
the regular market beta to the FF3 benchmark model. In the third row we include the coskewness
factor in the benchmark model. The fourth row reports the results after including the coskewness
factor and cokurtosis factor to the FF3 benchmark model. The last row reports the results after adding
the coskewness, cokurtosis and the downside beta spread factors to the FF3 benchmark model. The
numbers in parentheses are Newey-West corrected t-statistics for the average returns across all months,
and standard t-statistics for conditional averages.
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tially weaken our results. However, adding coskewness and cokurtosis does not alter our

results much. If both factors are added, the additional loss of the tail beta spread port-

folio is estimated at −5.34% with a t-statistic of −7.6 during extremely adverse months,

while the premium during usual market conditions is 0.77% with a t-statistic of 4.0.

We further consider several factors related to time dynamics in stock returns. Je-

gadeesh and Titman (1993) report a persistence in the returns based on the performance

during the past 3 to 12 months. Based on this result, Carhart (1997) extends the FF3

model by including a momentum factor. Further, De Bondt and Thaler (1985) find a

long term reversal in stock returns based on the performance over the past 3 to 5 years,

while Jegadeesh (1990) reports a short-term reversal based on the performance over the

last month.

To test whether these findings explain part of our results, we add the momentum

factor to the benchmark model in Table 8. The additional loss during extremely adverse

months on the high spread minus low spread portfolio cannot be explained by momentum.

The magnitude of the loss during adverse market conditions hardly changes and remains

significant with a t-statistic of −7.7. Interestingly, if the momentum factor is added, the

premium during the usual months decreases from 0.74% to 0.44%. However, the premium

remains significant with a t-statistic of 2.6. The decrease in the premium received during

usual market days reduces the overall premium on the zero investment portfolio from

0.14 to −0.13 (both insignificant). Adding factors for long-term and short-term reversal

does not change this picture much.

Pastor and Stambaugh (2003) cite anecdotical evidence on the withdrawal of liquidity

around market crashes. They observe the sharpest troughs in their liquidity measure

during months with significant financial and economic events, such as the 1987 crash and

the 1998 collapse of LTCM. To check whether the sensitivity to the aggregate liquidity

factor can explain part of our results, we add the liquidity factor from Pastor and Stam-

baugh (2003) to the FF3 benchmark model. The results remain practically unchanged

after this addition.
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Table 8: Robustness for other risk factors

Factors Re
m,t High βT − β 4 3 2 Low βT − β (5) - (1)

FF3 All 0.00 0.15 0.11 0.07 0.12 -0.13
+ Momentum (-0.0) (2.3) (2.0) (1.3) (1.0) (-0.6)

Adverse -2.48 -0.57 -0.09 0.81 2.40 -4.88
(-6.1) (-2.0) (-0.5) (3.4) (6.0) (-7.7)

Usual 0.29 0.24 0.14 -0.02 -0.15 0.44
(2.4) (3.4) (2.6) (-0.4) (-1.7) (2.6)

FF3 All 0.12 0.20 0.10 0.05 0.00 0.12
+ Reversal (1.0) (2.8) (1.8) (0.9) (0.0) (0.6)

Adverse -2.12 -0.46 -0.08 0.71 2.18 -4.30
(-4.9) (-1.4) (-0.4) (3.0) (5.5) (-7.0)

Usual 0.38 0.28 0.12 -0.03 -0.26 0.64
(3.2) (3.7) (2.4) (-0.6) (-2.8) (3.7)

FF3 All -0.01 0.18 0.13 0.11 0.15 -0.16
+ Momentum (-0.1) (2.7) (2.3) (2.0) (1.2) (-0.8)
+ Reversal Adverse -2.20 -0.39 -0.01 0.84 2.30 -4.50

(-5.0) (-1.1) (-0.1) (3.5) (5.4) (-7.2)
Usual 0.25 0.25 0.14 0.02 -0.11 0.35

(2.0) (3.4) (2.8) (0.4) (-1.1) (2.0)
FF3 All 0.18 0.21 0.09 0.00 -0.08 0.26
+ Liquidity (1.5) (2.8) (1.5) (-0.0) (-0.7) (1.3)

Adverse -2.27 -0.66 -0.16 0.78 2.30 -4.57
(-5.0) (-2.0) (-0.7) (3.1) (5.4) (-6.8)

Usual 0.47 0.31 0.12 -0.09 -0.35 0.81
(3.6) (4.0) (2.2) (-1.6) (-3.6) (4.5)

FF3 All 0.14 0.26 0.15 0.09 0.12 0.02
+ Momentum (1.2) (3.8) (2.5) (1.5) (0.9) (0.1)
+ Reversal Adverse -1.81 -0.29 0.09 0.86 2.26 -4.07
+ Liquidity (-3.8) (-0.8) (0.4) (3.2) (4.7) (-6.2)

Usual 0.36 0.32 0.16 0.00 -0.13 0.49
(2.9) (4.1) (2.7) (0.0) (-1.3) (2.7)

Note: At the start of each month t between July 1968 and Dec 2010, we estimate tail betas for NYSE,
AMEX and NASDAQ equities by applying the EVT approach in (3.2) on past daily returns from the 60
months prior to t. Market betas are estimated based on monthly returns from the same horizon. We form
5 value weighted portfolios by sorting on the spread between tail beta and market beta and construct
a zero-investment portfolio. We calculate risk-adjusted returns by applying (3.5) on the monthly stock
return at time t, where the loadings on the risk factors in the benchmark model are estimated for each
stock by an OLS regression on monthly returns from the 60 months prior to t. Three lines of results are
reported for each robustness check. First, the average risk-adjusted return across all months; second, the
average risk-adjusted return across months with an excess market return below −5%; third, the average
risk-adjusted return across the months with market returns above −5%.
The first row reports results after adding the momentum factor to the FF3 benchmark model. The second
row reports the results after adding the long-term en short-term reversal factor to the FF3 benchmark
model. In the third row both reversal factors and the momentum factor are included in the benchmark
model. The fourth row reports the results after including the liquidity factor to the FF3 benchmark
model. The last row reports the results after including all these factors to the FF3 benchmark model.
The numbers in parentheses are Newey-West corrected t-statistics for the average returns across all
months, and standard t-statistics for conditional averages.
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5.2 Stock characteristics

To provide further evidence that our results are not due to stock characteristics pre-

viously documented in the literature, we provide results after presorting on several char-

acteristics. That is, at t− 1 we first presort firms based on a certain characteristic, and

then we sort on tail beta within each cohort. We report the results of this procedure with

size as presorting variable in Table 3. In this subsection we focus on other characteristics.

In Table 9 we report the results after averaging within each tail beta quintile across the

different cohorts based on the presorting characteristic.

Table 9 shows that the results are qualitatively not affected by presorting on downside

beta, coskewness and cokurtosis. To capture short-term reversal, momentum and long-

term reversal, we presort stocks on the return accumulated over the past month, the past

2-12 months and the past 13-60 months. The baseline results do not change much after

presorting on those characteristics.

Gervais et al. (2001) document a high-volume premium. In Table 1 we observe that

firms with a high spread between tail beta and market beta have a trading volume that

is on average twice as low as firms with a low spread. To test whether our findings are

related to trading volume, we presort the firms on trading volume. Also after controlling

for trading volume the baseline results are unaffected.

5.2.1 Idiosyncratic volatility

We provide results on idiosyncratic volatility in more detail, because we observe a pat-

tern after presorting on this characteristic. Following Ang et al. (2006b) we concentrate

on idiosyncratic volatility relative to the FF3 benchmark model, which is measured by the

standard deviation of the residuals obtained from regressing the individual stock returns

on the FF3 factors. Table 1 reports a U-shaped relation between idiosyncratic volatility

and the size of the spread between tail beta and market beta. The observed U-shape is

intuitive. Both, a relatively high (positive) and a relatively low (negative) spread between

tail beta and market beta, indicate a deviation from a linear relation with the market. If

idiosyncratic risk is measured by the standard deviation of the residuals obtained from
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Table 9: Results after presorting
Presorting Re

m,t High βT − β 4 3 2 Low βT − β (5) - (1)

Spread (βDS − β) All 0.13 0.17 0.08 -0.06 -0.06 0.19
(1.1) (2.4) (1.4) (-1.1) (-0.5) (1.0)

Adverse -2.24 -0.65 0.03 0.59 2.47 -4.71
(-6.1) (-2.1) (0.2) (2.8) (6.3) (-7.2)

Usual 0.42 0.27 0.08 -0.13 -0.36 0.77
(3.8) (3.9) (1.5) (-2.5) (-4.2) (4.8)

Coskewness All 0.10 0.16 0.11 -0.01 -0.05 0.14
(0.8) (2.3) (2.4) (-0.2) (-0.4) (0.7)

Adverse -2.16 -0.66 -0.14 0.64 2.49 -4.65
(-5.6) (-2.4) (-0.6) (3.0) (7.4) (-7.6)

Usual 0.36 0.25 0.14 -0.09 -0.35 0.71
(3.3) (3.7) (2.6) (-1.7) (-4.1) (4.4)

Cokurtosis All 0.13 0.15 0.11 -0.02 -0.06 0.19
(1.1) (2.2) (2.2) (-0.3) (-0.6) (1.0)

Adverse -2.40 -0.63 -0.09 0.66 2.47 -4.87
(-5.8) (-2.4) (-0.5) (3.0) (7.1) (-7.7)

Usual 0.43 0.24 0.13 -0.10 -0.36 0.79
(3.8) (3.6) (2.6) (-1.9) (-4.4) (4.8)

Past 1 month All 0.14 0.10 0.05 0.05 0.03 0.11
performance (1.2) (1.5) (0.8) (0.8) (0.3) (0.6)

Adverse -2.38 -0.80 0.15 1.02 2.55 -4.94
(-6.5) (-2.9) (0.7) (3.9) (7.8) (-8.9)

Usual 0.44 0.21 0.03 -0.07 -0.27 0.70
(3.7) (3.2) (0.6) (-1.3) (-3.1) (4.2)

Past 2-12 months All 0.07 0.13 -0.03 -0.03 -0.09 0.15
performance (0.6) (2.0) (-0.6) (-0.5) (-0.9) (0.8)

Adverse -2.53 -0.55 -0.32 0.79 2.60 -5.12
(-6.7) (-2.3) (-1.4) (4.1) (7.8) (-8.7)

Usual 0.37 0.21 0.00 -0.13 -0.41 0.78
(3.4) (3.1) (0.0) (-2.3) (-4.8) (4.9)

Past 13-60 months All 0.10 0.19 0.07 0.02 0.01 0.08
performance (0.9) (2.8) (1.2) (0.4) (0.1) (0.4)

Adverse -2.44 -0.62 0.22 0.91 2.79 -5.23
(-6.9) (-2.4) (1.0) (4.3) (9.5) (-10.1)

Usual 0.40 0.28 0.05 -0.08 -0.31 0.71
(3.5) (4.1) (0.9) (-1.4) (-3.5) (4.4)

Volume All 0.09 0.11 0.03 0.00 -0.09 0.18
(0.9) (1.9) (0.7) (-0.1) (-1.0) (1.1)

Adverse -2.20 -0.77 0.04 0.74 2.43 -4.63
(-7.1) (-3.7) (0.2) (3.6) (8.2) (-8.6)

Usual 0.36 0.22 0.03 -0.09 -0.39 0.75
(4.0) (3.5) (0.7) (-1.8) (-5.3) (5.7)

Note: At the start of each month t between July 1968 and Dec 2010, we estimate tail betas for NYSE,
AMEX and NASDAQ equities by applying the EVT approach in (3.2) on daily returns from the 60
months prior to t. Market betas are estimated based on monthly returns from the same horizon. We
first presort the equities into five cohorts according to the stock characteristic specified in the first column.
Within each cohort we form 5 value weighted portfolios by sorting on the spread between tail beta and
market beta and construct a zero-investment portfolio. We calculate FF3-adjusted portfolio returns at
time t by applying (3.5) on monthly stock returns, where the loadings on the risk factors are estimated
by an OLS regression on monthly returns from the 60 months prior to t. The reported numbers are the
risk-adjusted returns averaged within each tail beta quintile across the different cohorts based on the
presorting characteristic.
In the first three rows, we report results after presorting on downside beta spread, coskewness and
cokurtosis. The fourth, fifth, sixth and seventh row report results after presorting on the past 1 month
return, the past 2-12 months return, the past 13-60 months return, and on trading volume in month
t − 1. The numbers in parentheses are Newey-West corrected t-statistics for the average returns across
all months, and standard t-statistics for conditional averages.
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a linear regression, then a larger deviation from the linear model will induce a higher

perceived level of idiosyncratic risk. Therefore, everything else being equal, we expect to

observe a higher level of idiosyncratic volatility in case of a larger deviation of the tail

beta from the market beta. According to this intuition, the level of idiosyncratic volatility

may produce a signal of the absolute spread between tail beta and market beta without

revealing the sign of the spread. Therefore, in the higher idiosyncratic volatility cohort

we expect larger differences between the high and low tail beta firms. This should be

reflected by both higher losses on the zero investment portfolio during extremely adverse

market conditions and a larger premium during usual market conditions. If this is the

case, we would expect that the magnitude of our findings increases with respect to the

level of idiosyncratic volatility.

To test this conjecture we provide detailed results of presorting firms on idiosyncratic

volatility in Table 10. The results confirm our expectation. The difference in losses

between high and low tail beta spread stocks during adverse market conditions for firms

in the lowest idiosyncratic volatility quintile is 2.95%, while the difference for stocks in the

highest idiosyncratic volatility quintile is 9.21%. It is further notable that the difference

increases monotonically and is very significant in all idiosyncratic volatility quintiles.

The same relation is observed in the premium during usual market days, although the

relation is not entirely monotonic. The difference in return between high and low tail beta

spread stocks during usual months for firms in the lowest idiosyncratic volatility quintile

is 0.73%, while the difference for stocks in the highest idiosyncratic volatility quintile is

1.63%. To summarize, the results confirm that idiosyncratic volatility provides a signal

of the magnitude of the spread between tail beta and market beta without revealing its

sign.

5.3 Methodological changes

Table 11 provides the results from robustness checks for several methodological devi-

ations. One potential reason why we do not find a positive premium on systematic tail

risk is the market turmoil from 2007 until 2010. The recent crisis may have erased the
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Table 10: Presorting on idiosyncratic volatility

Idiosyncratic
Re

m,t Volatility High βT − β 4 3 2 Low βT − β (5) - (1)

All R̄∗
FF3,p Low 0.21 0.06 0.08 0.01 -0.13 0.34

2 0.29 0.16 0.11 -0.19 -0.08 0.36
3 0.18 0.13 0.17 -0.10 0.06 0.12
4 0.16 -0.18 0.21 0.09 0.02 0.14

High 0.01 -0.17 -0.12 -0.31 -0.48 0.48
Avg 0.17 0.00 0.09 -0.10 -0.12 0.29

t-stat Low (2.4) (0.7) (1.1) (0.2) (-1.4) (2.4)
2 (2.2) (1.5) (1.0) (-1.8) (-0.6) (1.8)
3 (1.0) (0.9) (1.2) (-0.8) (0.3) (0.5)
4 (0.8) (-1.1) (1.5) (0.6) (0.1) (0.4)

High (0.0) (-0.9) (-0.6) (-1.5) (-1.9) (1.2)
Avg (1.4) (-0.0) (1.3) (-1.2) (-0.9) (1.4)

Adverse R̄∗
FF3,p Low -1.17 -0.01 0.03 0.43 1.78 -2.95

2 -1.49 -0.07 0.24 0.22 2.08 -3.57
3 -1.81 -0.65 0.56 1.71 2.92 -4.73
4 -2.05 -1.36 0.68 1.50 4.06 -6.11

High -4.16 -1.32 0.41 1.90 5.05 -9.21
Avg -2.14 -0.68 0.39 1.15 3.18 -5.31

t-stat Low (-3.0) (-0.0) (0.1) (1.5) (5.0) (-6.0)
2 (-3.7) (-0.2) (0.6) (0.7) (4.0) (-4.9)
3 (-3.4) (-1.2) (1.3) (3.2) (4.8) (-5.9)
4 (-3.1) (-2.1) (1.3) (2.2) (5.9) (-5.9)

High (-4.3) (-1.7) (0.7) (2.4) (5.6) (-6.6)
Avg (-4.9) (-2.0) (1.5) (3.1) (7.2) (-7.4)

Usual R̄∗
FF3,p Low 0.38 0.06 0.08 -0.04 -0.35 0.73

2 0.50 0.18 0.09 -0.24 -0.34 0.83
3 0.41 0.23 0.12 -0.32 -0.28 0.70
4 0.42 -0.04 0.16 -0.07 -0.46 0.88

High 0.50 -0.04 -0.18 -0.57 -1.13 1.63
Avg 0.44 0.08 0.05 -0.25 -0.51 0.95

t-stat Small (4.3) (0.8) (1.1) (-0.4) (-3.8) (5.2)
2 (4.1) (1.9) (1.0) (-2.3) (-2.7) (4.3)
3 (2.4) (1.6) (0.9) (-2.2) (-2.0) (3.0)
4 (2.1) (-0.3) (1.0) (-0.5) (-2.8) (3.2)

Large (1.9) (-0.2) (-1.0) (-2.9) (-4.5) (4.4)
Avg (4.0) (1.0) (0.8) (-3.0) (-5.0) (5.5)

Note: At the start of each month t between July 1968 and Dec 2010, we estimate tail betas for NYSE,
AMEX and NASDAQ equities by applying the EVT approach in (3.2) on daily returns from the 60
months prior to t. Market betas are estimated based on monthly returns from the same horizon. We
first presort the equities into five cohorts based on the level of idiosyncratic volatility. Idiosyncratic
volatility is calculated as the standard deviation of the residuals obtained from regressing monthly stock
returns from the 60 months prior to t on the FF3 factors. Within each idiosyncratic volatility cohort
we form 5 value weighted portfolios by sorting on the spread between tail beta and market beta and
construct a zero-investment portfolio. We calculate FF3-adjusted portfolio returns at time t by applying
(3.5) on monthly stock returns, where the loadings on the risk factors are estimated by an OLS regression
on monthly returns from the 60 months prior to t. The table reports the average risk-adjusted returns of
each portfolio. The numbers in parentheses are Newey-West corrected t-statistics for the averages across
all months, and standard t-statistics for conditional averages.
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potential positive premium on systematic tail risk. To test this hypothesis we repeat the

tests on a subsample until 2007. The average value weighted FF3-adjusted return on

the zero investment portfolio increases from 0.14% to 0.19%, but remains insignificantly

different from zero with a t-stat of 1.0. Further, the positive premium on systematic tail

risk during usual market days and the additional loss during extremely adverse periods

remain strongly significant.

A structural break in the CRSP data is the entrance of NASDAQ firms in January

1973. After collecting five years of return data to estimate tail betas, the first NASDAQ

firms enter the constructed portfolios in January 1978. To test whether the results are

robust for this structural break, we repeat the asset pricing tests on portfolio returns

from January 1978 onwards. The results are robust for restricting the sample horizon.

Alternatively, we also repeat the asset pricing tests while restricting the sample to NYSE

firms only. Although the loss during adverse months for the high minus low tail beta

spread decreases from 4.90% to 4.48%, its t-statistic increases from −8.0 to −8.7. These

results suggest that our findings are not sample specific.

The next robustness check is on the choice in the definition of extremely adverse

market conditions. In the baseline result, we define months with an excess market return

below −5% as ‘extremely adverse market conditions’ and those with a return above

−5% as ‘usual market conditions’. We test whether our results are robust for this specific

choice. In the table we repeat our procedure, but include only the 20 worst months in the

sample of extremely adverse months. Our results are robust for this alternative definition.

The risk-adjusted loss on the zero investment portfolio increases from −4.9% to −6.5%

during these more adverse months. The inclusion of potentially adverse months in the

sample with usual months also shrinks the premium received during the other months,

both in terms of magnitude and significance level. Nevertheless, the reduced premium

remains significant.

The estimation of each tail beta is based on the 50 worst market days during the past

60 months. To test whether our results are robust for alternative choice, we also estimate

the tail beta based on the 30 worst market days during the past 60 months, i.e., we set
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Table 11: Methodological robustness

Robustness Re
m,t Obs High βT − β 4 3 2 Low βT − β (5) - (1)

Pre-crisis All 463 0.12 0.17 0.07 -0.01 -0.07 0.19
(0.9) (2.3) (1.3) (-0.3) (-0.7) (1.0)

Adverse 44 -2.33 -0.72 -0.18 0.54 1.92 -4.25
(-5.0) (-2.2) (-0.8) (2.1) (4.9) (-6.5)

Usual 419 0.38 0.26 0.10 -0.07 -0.29 0.66
(3.0) (3.4) (1.9) (-1.3) (-3.3) (3.8)

Post NASDAQ Break All 397 0.14 0.17 0.12 -0.01 -0.01 0.15
(1.0) (2.0) (1.9) (-0.1) (-0.1) (0.6)

Adverse 40 -2.59 -0.83 -0.07 0.79 2.93 -5.51
(-5.4) (-2.2) (-0.3) (2.6) (6.5) (-7.4)

Usual 357 0.45 0.29 0.14 -0.10 -0.34 0.79
(3.1) (3.3) (2.3) (-1.5) (-3.3) (3.9)

NYSE stocks only All 510 0.11 0.15 0.03 -0.03 -0.13 0.23
(1.0) (2.6) (0.6) (-0.5) (-1.2) (1.4)

Adverse 54 -1.66 -0.32 0.29 0.68 2.43 -4.09
(-4.1) (-1.4) (1.2) (2.6) (6.8) (-7.3)

Usual 456 0.31 0.21 0.00 -0.12 -0.43 0.75
(3.2) (3.7) (0.1) (-2.0) (-4.7) (4.7)

More adverse months All 510 0.11 0.17 0.08 0.02 -0.03 0.14
(0.9) (2.4) (1.4) (0.4) (-0.3) (0.7)

Adverse 20 -3.36 -0.92 -0.32 0.90 3.13 -6.49
(-5.0) (-1.9) (-1.0) (2.1) (4.2) (-5.4)

Usual 490 0.25 0.22 0.10 -0.02 -0.16 0.41
(2.1) (3.0) (1.8) (-0.3) (-1.8) (2.3)

Lower tail threshold All 510 0.02 0.17 0.09 -0.01 -0.02 0.04
(0.2) (2.5) (1.7) (-0.2) (-0.2) (0.2)

Adverse 54 -2.28 -0.57 -0.09 0.63 2.48 -4.77
(-5.6) (-2.1) (-0.4) (3.0) (5.3) (-7.0)

Usual 456 0.29 0.26 0.11 -0.09 -0.32 0.61
(2.5) (3.6) (2.1) (-1.5) (-3.4) (3.5)

Conditional approach All 510 0.08 0.13 0.03 -0.13 -0.06 0.14
(1.1) (2.6) (0.5) (-1.6) (-0.4) (0.7)

Adverse 54 -1.23 0.26 0.78 1.09 3.61 -4.84
(-4.1) (1.4) (3.4) (4.0) (6.2) (-7.3)

Usual 456 0.24 0.11 -0.06 -0.27 -0.50 0.73
(3.5) (2.1) (-0.9) (-3.4) (-4.0) (4.4)

Note: At the start of each month t between July 1968 and Dec 2010, we estimate tail betas for NYSE,
AMEX and NASDAQ equities by applying the EVT approach in (3.2) on past daily returns from the 60
months prior to t. Market betas are estimated based on monthly returns from the same horizon. We form
5 value weighted portfolios by sorting on the spread between tail beta and market beta and construct
a zero-investment portfolio. We calculate FF3-adjusted returns by applying (3.5) on the monthly stock
return at time t, where the loadings on the risk factors in the benchmark model are estimated for each
stock by an OLS regression on monthly returns from the 60 months prior to t. Three lines of results are
reported for each robustness check. First, the average FF3-adjusted return across all months; second,
the average FF3-adjusted return across months with an excess market return below a certain threshold;
third, the average FF3-adjusted return across the months with market returns above this threshold. If
the threshold is not specified, then it is fixed at −5%.
The first row reports results based on the pre-crisis sample: from July 1968 to Dec 2006. The second row
reports results based on the sample after the entrance of NASDAQ firms: from Jan 1978 to Dec 2010.
The third row varies the threshold such that only 20 months are selected in the sample with extremely
adverse market conditions (the corresponding threshold level is −8.1%). The fourth row reports the
results if tail betas are estimated with k = 30 instead of k = 50 in (3.2). The fifth row reports the
result based on estimating the tail beta by a conditional regression approach, based on the observations
corresponding to the 50 worst daily market excess returns during the months between t− 60 and t− 1.
The numbers in parentheses are Newey-West corrected t-statistics for the averages across all months,
and standard t-statistics for conditional averages.
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k = 30 and estimate tail beta based on about k/n ≈ 2.5% of the worst market days. The

results do barely change, although the t-statistic of the premium during usual market

days decreases somewhat from 4.3 to 3.5.

Finally, we test whether the results are robust for using an alternative estimator for

tail beta. Instead of using the EVT estimator in (3.2), we apply the conditional regression

approach on daily returns. That is, we perform an OLS regression based on the 50 days

with the worst daily market returns in each estimation window. The results remain

practically unchanged, both in terms of magnitude and significance.

To summarize, the robustness checks suggest that our baseline results are robust for

several methodological changes, and for controlling several firm characteristics that have

been documented in the literature to explain the cross-section of returns. Two findings

are notable. First, adding the momentum factor reduces the premium that portfolios

with high tail betas receive during usual periods, without reducing the additional losses

that these portfolios suffer during extremely adverse months. Second, we find evidence

that idiosyncratic risk provides a signal about the magnitude of the deviation between

tail beta and market beta.

6 Risk management

Since historical tail betas can capture future losses under extremely adverse market

conditions, tail betas may help investors assess the tail risk of portfolios. As an additive

measure of loading on systematic tail risk, the tail beta is also a useful measure in the

context of managing the tail risks of portfolios. We discuss this application in the current

section.

We consider a portfolio consisting of d assets, following the linear tail model in (2.1)

with nonnegative tail betas, βT
1 , · · · , βT

d . Then, under extremely adverse market condi-

tions, the excess return of a portfolio with non-negative investment weights, w1, · · · , wd,
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can be written as

Re
P =

(
d∑

j=1

wjβ
T
j

)
Re

m +
d∑

j=1

wjεj, for Re
m < −V aRm(p̄). (6.1)

Hence, the portfolio return also follows a linear tail model with a portfolio tail beta equal

to the weighted average of the tail beta of the individual assets, i.e., βT
P =

∑d
j=1wjβ

T
j

and an idiosyncratic component that is given by εP =
∑d

j=1 wjεj.

To evaluate the tail risk of a portfolio, it is necessary to aggregate the systematic and

idiosyncratic tail risks. We start by discussing the aggregation for a single asset. Suppose

the linear tail model in (2.1) and the heavy-tailed setup in (3.1) hold for a larger area,

min(Re
m, R

e
j) < −V aRm(p̄). It then follows that the probability of a loss on asset j larger

than u can be approximated by

Pr(Re
j < −u) ∼ Pr(βT

j R
e
m < −u) + Pr(εj < −u), as u → ∞. (6.2)

This approximation follows from Feller’s convolution theorem on aggregating risk factors,

which states that the probability that the sum of independent heavy-tailed risk factors is

above a high threshold can be approximated by the sum of the probabilities of each risk

factor being above that threshold; see Feller (1971, p. 278).9 Suppose the idiosyncratic

risk, εj, follows a heavy-tailed distribution with tail index αεj and scale Aεj .
10 If αεj > αm,

then the systematic tail risk dominates the idiosyncratic tail risk, i.e., Pr(εj < −u) =

o(Pr(βT
j R

e
m < −u)) as u → ∞. Consequently, the downside tail distribution of the excess

asset return, Re
j , follows a heavy-tailed distribution with tail index αj = αm and scale

Aj = (βT
j )

αmAm. In contrast, if αεj < αm, then the idiosyncratic risk dominates the tail

risk of the asset, and we have αj = αεj and Aj = Aεj . In the case αεj = αm, both of the

two components contribute to the tail risk of the asset, and we have Aj = (βT
j )

αmAm+Aεj .

In the portfolio context, we first consider the case αε1 = · · · = αεd = αm. Suppose

the assets have independent idiosyncratic tail risks with scales Aε1 , · · · , Aεd . Following

9Embrechts et al. (1997), Lemma 1.3.1., provides the proof for the case αm = αεj . Along the same
lines of proof one can obtain that this relation holds for αm ̸= αεj .

10A thin-tailed idiosyncratic risk could be thought of as having αεj = ∞ in the following discussion.
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Feller’s convolution theorem, the downside tail of the portfolio follows a heavy-tailed

distribution with tail index αP = αm and scale

AP = (βT
P )

αmAm +
d∑

j=1

wαm
j Aεj . (6.3)

In practice, all parameters in equation (6.3) can be statistically estimated. In particular,

the tail beta of the portfolio, βT
P , can be obtained by taking a weighted average of the

tail beta estimates of the individual assets, the β̂T
j s. Furthermore, the scales of the

idiosyncratic tail risks, Aεj , can be obtained from

Âεj = Âj − (β̂T
j )

α̂mÂm, (6.4)

where the scales of the market return and the asset return, Am and Aj, can be estimated

by univariate EVT analysis; see e.g. Hill (1975). With equation (6.3), we thus obtain the

estimate of the scale of a portfolio. Subsequently, the VaR of the portfolio for some low

probability level p can be calculated from the approximation

V aRP (p) ≈
(
AP

p

)1/αm

. (6.5)

Next, consider the case in which some assets in the portfolio correspond to αεj > αm.

The idiosyncratic tail risks of those assets are dominated by their systematic tail risk and

do not contribute to the tail risk of the portfolio. Hence, it is still possible to evaluate the

scale of the portfolio with equation (6.3) by omitting the idiosyncratic tail risks of those

assets. However, it is not necessary to identify those assets or to modify the estimation

procedure from equations (6.3) and (6.4). Assets with αεj > αm exhibit complete tail

dependence with the market return, i.e., τj = 1 and Aj = (βT
j )

αmAm. Therefore, the

estimator on Aεj in (6.4) converges to zero under the EVT approach. Including the

estimate of Aεj for such assets in equation (6.3) will not contaminate the estimate of the

portfolio scale. In summary, equation (6.3) can be applied to any portfolio consisting of

assets with αεj ≥ αm.
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Finally, we discuss the case in which some assets correspond to αεj < αm. Theoret-

ically, the downside tail risk of the portfolio would be dominated by the idiosyncratic

risk of the asset with the lowest tail index. However, in practice this may not be the

case. The reason is that the return on many assets is in fact bounded from below by

−100%.11 Such an asset j with investment weight wj can generate a maximum loss of

wj. Therefore, in a well-diversified portfolio with a sufficiently large number of assets,

the idiosyncratic tail risks do not contribute to the tail risk of the portfolio under the

condition that their returns have a lower bound. This is achieved even if some assets

correspond to the case αεj < αm.
12 In contrast to the idiosyncratic risks, the systematic

tail risk cannot be diversified away by investing in a large number of assets, because the

tail beta of a portfolio is the weighted average of those of the individual assets. Hence,

for any well-diversified portfolio consisting of a sufficiently large number of assets with

lower bounded returns, the scale of its downside tail distribution can be approximated

by

AP =

(
d∑

j=1

wjβ
T
j

)αm

Am.

Subsequently, the VaR can be calculated from equation (6.5).

7 Concluding remarks

This paper investigates whether systematic tail risk is compensated in the cross-

section of expected returns. Asset pricing theory based on an equilibrium framework

with safety-first investors suggests that higher loadings on systematic tail risk should be

associated with a positive risk premium. Theoretically, the risk premium for any asset is

proportional to its tail beta, which measures the sensitivity to systematic tail risk. Based

on an EVT approach, we estimate tail betas and test empirically whether stocks with

11Examples of assets of which the returns have a lower bound are long positions in stocks and bonds.
Counterexamples are short positions in currencies and stocks.

12The lower bound of equity returns is not accounted for in the heavy tail approximation, as in (3.1).
Instead, one could consider truncated heavy-tailed distributions. Ibragimov and Walden (2007) prove
the diversification effects of bounded risk factors from truncated heavy-tailed distributions provided that
the number of risk factors is sufficiently large.
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high tail betas received higher average returns.

We find that assets with higher tail betas are associated with significantly larger losses

during future extreme market downturns. Hence, historical tail betas are able to capture

the sensitivity to future systematic tail risk. Further, the asset pricing tests do not report

a significant positive premium for high tail beta stocks over the entire historical sample.

One potential interpretation of this result is that there are measurement issues, such as

time variation in the actual tail betas. Even if systematic tail risk is priced in the cross-

section of expected returns, time-varying tail betas might weaken the observed premium

when sorting on historical estimates. However, our historical estimates perform well in

differentiating future losses under extremely adverse market conditions. Hence, such an

interpretation is satisfactory only if the risk premium for loading on systematic tail risk

is rather low, which suggests that the room for a positive systematic tail risk premium in

the cross-section of expected returns is limited. In addition, we find weak evidence of a

significant negative premium among small and medium firms, which further supports the

absence of a positive premium for high tail beta stocks. Possible explanations for these

results are that fund managers are less concerned with the performance of their portfolios

under extremely adverse conditions than their clients, or that investors are insufficiently

aware of the cross-sectional differences in systematic tail risk.

Parallel to the tail beta which measures assets’ sensitivity to the extreme downside

risk of the market, individual assets may also exhibit differences in their comovement

with large market booms. The methodology to estimate ‘downside’ tail betas can also be

applied to estimate ‘upside’ tail betas. In the same vein as the discussion on (downside)

risk management, such upside tail betas may provide information on portfolio profits in a

hypothetical large boom, where the upside tail beta of a portfolio is a weighted average of

the upside tail betas of the individual assets. In the safety-first framework, which focuses

on downside risk only, upside tail betas are irrelevant for the cross-section of expected

returns. The relevance of upside tail betas in other asset pricing frameworks is left for

future research.
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Appendix A: Proof of equality in equation (2.3)

We start by introducing the notation of Arzac and Bawa (1977). Let the initial and

future market value of asset j be denoted by Vj and Xj. Then each asset j generates

a return Rj = Xj/Vj. The value-weighted market portfolio has the initial and future

value Vm =
∑

j Vj and Xm =
∑

j Xj, and therefore the market return is defined as

Rm =
∑

j Xj∑
j Vj

=
∑

j w
∗
jRj, with weights w∗

j = Vj/(
∑

j Vj).

Investor i holds a portfolio with fractions of the risky assets (γi,1, γi,2, · · · ), which

generates a future value as
∑

j γi,jXj =
∑

j γi,jVjRj. Let us denote the p-quantile of the

future value of investor i and the market portfolio as Qi and Qm, respectively. Then the

p-quantile of the market return is qm = Qm/Vm.

With this notation, Arzac and Bawa (1977, eq. 14) give the formula to calculate the

parameter βAB
j as

βAB
j =

qj − rf
qm − rf

.

Here qj is given by

qj :=

∂Qi

∂γi,j
|(γi,j)=(γi)

Vj

,

where (γi) is the optimal portfolio holding for investor i on all assets. The right-hand

side is the same across all investors.

Because qm−rf is the p−quantile of the market excess return, we have that qm−rf =

−V aRm(p). Therefore, to prove the equality in equation (2.3), it is only necessary to

prove that qj = E(Rj|Rm = Qm(p)), where Qm(p) = qm is the p−quantile of the return

of the market portfolio.

To relate the quantile of the future value of investors’ portfolio to that of the market

return, we define for any positive investments (u1, u2, · · · ) the p−quantile of
∑

j ujRj as

f(u1, u2, · · · ). Notice that Qm = f(V1, V2, · · · ), QI = f(γi,1V1, γi,2V2, · · · ). We calculate

qj as

qj =

∂f(γi,1V1,γi,2V2,··· )
∂γi,j

|(γi,j)=(γi)

Vj

=
Vj

∂f
∂uj

|(uj)=(γiVj)

Vj

=
∂f

∂uj

|(uj)=(γiVj) .

The function f is homogeneous with degree one, which implies that its partial derivative
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∂f
∂uj

is a homogeneous function with degree zero. Consequently, we have

∂f

∂uj

|(uj)=(γiVj)=
∂f

∂uj

|(uj)=(w∗
j )
.

To derive the partial derivative of the f function, we use the expression that

f(u1, u2, · · · ) = E(
∑
j

ujRj|
∑
j

ujRj = f(u1, u2, · · · , )).

Thus,

∂f

∂uj

|(uj)=(w∗
j )

=
∂

∂uj

E(
∑
j

ujRj|
∑
j

ujRj = f(u1, u2, · · · , )) |(uj)=(w∗
j )

=
∂

∂uj

∑
j

ujE(Rj|
∑
j

ujRj = f(u1, u2, · · · , )) |(uj)=(w∗
j )

=E(Rj|
∑
j

ujRj = f(u1, u2, · · · , )) |(uj)=(w∗
j )

=E(Rj|Rm = Qm(p)).

The last equality follows from the fact that Rm =
∑

j w
∗
jRj and Qm(p) = f(w∗

1, w
∗
2, · · · ).

The qj thus quantifies the contribution of asset j to the p−quantile of the market return.

�
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