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Abstract 

This paper presents two simple algorithms to calculate the portfolio 

weights for a risk parity strategy, where asset class covariance 

information is appropriately taken into consideration to achieve “true” 

equal risk contribution. Previous implementations of risk parity either (1) 

used a naïve 1/vol solution, which ignores asset class correlations, or (2) 

computed “true” risk parity weights using relatively complicated 

optimizations to solve a quadratic minimization program with non-linear 

constraints. The two iterative algorithms presented here require only 

simple computations and quickly converge to the optimal solution. In 

addition to the technical contribution, we also compute the parity in 

portfolio “risk allocation” using the Gini coefficient. We confirm that 

portfolio strategies with parity in “asset class allocation” can actually 

have high concentration in its “risk allocation”. 
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Introduction 

Markowitz (1952)’s portfolio optimization has long been the theoretical foundation for 

traditional strategic asset allocation. However, the difficulties in accurately estimating expected 

returns, especially given the time-varying nature of asset class risk premiums and their joint 

covariance, means the MVO approach has been enormously challenging to implement in 

reality.5 In practice, institutional investors often default to a 60/40 equity/bond strategic 

portfolio without any pretense of mean-variance optimality; the 60/40 portfolio structure, 

instead, has largely been motivated by the 8~9% expected portfolio return one can attach to 

the portfolio mix. However, the 60/40 portfolio is dominated by equity risk because stock 

market volatility is significantly larger than bond market volatility. Even if one adds alternative 

asset classes to the 60/40 asset allocation, these allocations are generally too small to 

meaningfully impact the portfolio risk. In this sense, a 60/40 portfolio variant earns much of its 

return from exposure to equity risk and little from other sources of risk, making this portfolio 

approach fairly under-diversified. 

Risk parity represents a portfolio strategy that attempts to address the equity risk 

concentration problem in standard 60/40-like balanced portfolios. At the high level, the risk 

parity concept assigns the same risk budget to each asset component. This way, no asset class 

can be dominant in driving the portfolio volatility. Many possible interpretations of “risk 

contribution” exist, however, and there are considerable disagreements, not to mention 

opacity, in methodologies adopted by different providers. Furthermore, very few of the 

research articles documenting the benefits of the risk parity approach state the portfolio 

construction methods clearly.6  This makes examining risk parity strategies difficult. We assert 

that the literature on risk parity stands to benefit from greater congruence in the definition of 

“risk contribution” and transparency in methodologies.   

In this paper, we do not make an attempt to argue that the risk parity approach is 

superior relative to the traditional 60/40 structure or to mean-variance optimal portfolios. Our 

focus and, therefore, contribution is technical in nature. First, we define what we hope to be a 

fairly non-controversial definition of equal risk contribution. This then allows us to present two 

simple and transparent algorithms for producing risk parity portfolios.  We lean heavily on the 

earlier work of Maillard, Roncalli, and Teiletche (2010), which proposes an approach to 

                                                           
5
 See Merton (1980) for a discussion on the impact of time-varying volatility on the estimate for expected returns. 

See Cochrane (2005) for a survey discussion on time-varying equity premium and models for forecasting equity 
returns. See Campbell (1995) for a survey on time-varying bond premium. See Hansen and Hodrick (1980) and 
Fama (1984) for evidence on time-varying currency returns. See Bollerslev, Engle and Wooldridge (1987) and 
Engle, Lilien and Robins (1987) for evidence on time-varying volatility in equity and bond markets. 
6
 See Qian (2005, 2009) and Peters (2009), which are product provider white papers discussing their respective risk 

parity strategies. 
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compute an equal risk contribution portfolio. We adopt Maillard, Roncalli and Teiletche 

(2010)’s equal risk contribution definition as the objective for our risk parity portfolio and 

develop two simple algorithms to efficiently compute our risk parity asset weights. 

Theoretically, if all asset classes have roughly the same Sharpe ratios and the same 

correlations, the standard naïve risk parity weighting (weight assets by 1/vol7) could be 

interpreted as optimal under the Markowitz framework.8 Maillard, Roncalli, and Teiletche 

(2010) extend the naïve risk parity weighting approach to account for a more flexible 

correlation assumption. However, the numerical optimization necessary to identify the optimal 

portfolio weights can be tricky, time-consuming, and require special software. By contrast, the 

algorithms proposed here do not involve optimization routines and can output reasonable 

portfolio weights quickly with simple matrix algebra. We demonstrate that our algorithmic 

approaches result in reasonable ex post “equal risk contribution” and produce attractive 

portfolio returns. 

 

Defining Risk Parity 

This section first presents a rigorous mathematical definition for risk parity using the equal risk 

contribution notion of Maillard, Roncalli, and Teiletche (2010).  We then demonstrate the 

algebraic solution as well as the required numerical steps to compute portfolios with non-

negative weights.  While our initial motivation is similar to Maillard, Roncalli, and Teiletche 

(2010), we specify the problem slightly differently to demonstrate that our approach leads to 

different and, most importantly, simplified solutions.9 Again, our contribution is largely 

technical; we provide readers with two alternative approaches to compute sensible risk parity 

portfolio weights.  Note, throughout the initial exposition, we also reference the minimum 

variance portfolio extensively.  This is because the algebraic nuances are best illustrated by 

comparing and contrasting to the minimum variance portfolio calculation, which is well-

understood and intuitive. 

Using    and    to denote, respectively, the return and weight of each individual asset  , 

the portfolio’s return and standard deviation can be written as 

                                                           
7
 Bridgewater Associates promotes implementing risk parity strategies as a passive management, by treating asset 

classes as uncorrelated (or assuming constant correlations between them). 
8
 For an exact mathematical proof of this statement, see Maillard, Roncalli and Teiletche (2010). 

9
 These authors refer to risk parity portfolios as equally weighted risk contribution portfolios, or ERC. We prefer the 

first denomination, because it has become standard among both practitioners and academics. 
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where     is the covariance between assets   and  , and       
  is the variance of asset  . We 

also present two measures of risk contribution that will be useful for defining and 

understanding risk parity portfolios. The first one is the marginal risk contribution,  
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which tells us the impact of an infinitesimal increase in an asset’s weight on the total portfolio 

risk, measured here as the standard deviation. The second one is the total risk contribution 

(TRC) 
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which gives us a way to break down the total risk of the portfolio into separate components. To 

see why this is the case, notice that 
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Next we characterize the risk parity (RP) portfolios in terms of risk contributions and 

show how to find their weights without any optimizations.  
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To illustrate the intuition of the approach, we discuss the application of the MRC 

measure on the minimum variance portfolio. The results for the minimum variance portfolio 

are well known and are presented here since they provide an interesting comparison. Notice 

that the minimum variance portfolio can be obtained by equalizing all the MRCs. The logic 

behind this requirement is simple: If the MRCs of any two assets were not the same, one could 

increase the contribution of one asset and decrease that of the other to obtain a slightly lower 

portfolio variance. The idea behind risk parity is more straightforward: Simply equalize all the 

TRCs, as these are direct measures of total portfolio risk. Translating these descriptions into 

equations we get 
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where   and   are constants to be found. 

In order to find the solution for these two problems, it helps to write them in matrix 

form. To do this, recall that    , where   is the covariance matrix and   is the vector of 

weights, is equivalent to a vector of covariances. Thus, using   to denote a vector of ones and 

  ⁄  to denote the vector  [   ⁄     ⁄ ] , we can write 

 

 (  )            (7)  

 (  )          
 

 
 (8)  

 

The solution for the minimum variance portfolio is straightforward. Solving the 

expression in Equation (7) and imposing the constraint       , we obtain the well-known 

solution        (        )⁄ . However, if one wants to impose non-negativity constraints 

(   ) on the weights, a numerical optimizer is required. 

Finding the solution for the risk parity portfolio, even without any constraints on the 

weights, is a different matter. Simple solutions exist only in the special situation where assets 
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are assumed to have identical pairwise correlation; in which case, the optimal weights are 

proportional to the inverse of the standard deviation,   ⁄ . The weighting by   ⁄  is of course 

the naïve risk parity solution commonly referenced in the existing literature.  We show below, 

and in the appendix, that this naïve solution is still important and useful for our proposed 

approaches. However, with the simple algorithms presented here, which can quickly and easily 

compute risk parity weights that provide true equal risk contribution, there is no longer reason 

to favor the naïve   ⁄  approach. 

To illustrate the challenges in finding the optimal risk parity weights in the general case, 

notice that dividing Equation (8) by the variance of the portfolio and rearranging gives us 

      ⁄    This expression combined with the fact that ∑   
 
      yields 

     
 

  
⁄

∑  
  

⁄
 
   

 (9)  

The difficulty with Equation (9) is that the   s on the right-hand side are a function of the   s on 

the left-hand side. In other words, one cannot find the betas without the weights, but the 

weights depend on the betas. The usual approach to solving this type of problem is to write 

down the entire expressions and try to isolate the weights, but this approach does not work 

with these equations. 

To deal with this challenge, Maillard, Roncalli, and Teiletche (2010) propose two 

optimization problems to find the optimal risk parity weights. The first one minimizes 

  ∑ ∑ (         )
  

   
 
    (10)  

subject to ∑   
 
      and, if desired,       . The second approach is a more complicated 

optimization that involves nonlinear constraints, and we refer interested readers to their paper. 

The direction we follow here is very different. The algorithms we propose do not allow 

us to specify constraints on the weights, but we show in the numerical examples later that for 

most applications with real data our algorithms compute the same “optimal” risk parity 

solution as the original Maillard, Roncalli, and Teiletche (2010), with weights restricted between 

zero and one. Moreover, they have the advantage of not requiring optimization software, and 

can be implemented in any programming language or spreadsheet capable of executing simple 

arithmetic and matrix operations. 

A mathematical interpretation of risk parity portfolios gives us some intuition about the 

problem and helps in understanding the convergence properties of the optimization. Notice 

that Equation (8) has a striking similarity to an eigenvector-eigenvalue equation,        , 

which is one of the most studied problems in matrix algebra. And although it is nonlinear, it still 
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retains some of the properties of its linear counterpart. For instance, notice that by multiplying 

Equation (8) by     and rearranging we obtain 

      
 

 
 

 

 
   (11)  

This expression presents an easy way to obtain a second solution to the risk parity problem: 

simply apply one of the iterative algorithms presented below to the inverse of the covariance 

matrix,    , and then invert the solution found. This alternative approach has the potential to 

find a solution even when the original one fails. 

 

Algorithm 1:  Newton’s Method 

Our first algorithm is an application of Newton’s method to solving a system of nonlinear 

equations. Writing the system in general form, one is interested in finding the solution to 

 ( )   . Recall that we can write a linear approximation to this system around any point   

using a Taylor expansion, 

   ( )   ( )   ( )  (   ) (12)  

where  ( ) represents the Jacobian (matrix) of  ( ) evaluated at point  . Now, since we are 

looking for a root of the system, we set  ( )    and solve for  : 

  y   [ ( )]    ( ) (13)  

Of course this solution is only an approximation, but the idea behind the method is that 

repeated iterations of Equation (13) will get us closer and closer to the optimal solution. In 

other words, given an approximate solution  ( ), one can calculate 

   (   )   ( )  [ ( ( ))]
  

  ( ( )) (14)  

and, if the method converges, then  ( )   .  

The remaining step is simply to write the risk parity problem as a system of nonlinear 

equations. This can be easily done by using Equation (8) from the previous section, and by 

imposing the restriction that the weights add up to one: 

   ( )   (   )  [
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This represents a system with     equations and     variables (  and  ), and its Jacobian 

is a         matrix 
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] (16)  

where     (
 

  ) represents a diagonal matrix with elements equal to    
 ⁄ . 

The following steps illustrate the iterative process just described: 

1. Start with an initial guess for portfolio weights  ( ) (equal weight or the traditional risk 

parity approximation,   ⁄ ),  ( ) (any number between zero and one) and a stopping 

criterion or threshold,  . Define  ( )  [ ( )  ( )] .10 

2. Calculate  ( ( )),  ( ( )) and  (   ) using the formulas above. 

3. If the condition 

  ‖ (   )   ( )‖    (17)  

is satisfied, stop. If not, go back to step 2. 

When compared with the second algorithm, this method requires slightly more 

complicated operations, such as a matrix inverse, but usually converges faster. Moreover, we 

found that it tends to be more robust, reaching the optimal solution even when the second 

algorithm fails in special situations.  

 

Algorithm 2:  Power Method 

To understand the second algorithm, notice that, as shown by Equation (9) above, the weights 

are a function of the betas, which in turn depend on the weights. These dependencies create a 

circular relationship that precludes us from finding a simple analytical solution for the weights. 

Fortunately, it also seems to provide a recipe on how to proceed. 

Imagine that one would start with an initial guess for the weights and calculate the 

betas associated with them. Aside from incredible luck, the TRCs from all assets would not be 

the same. However, Equation (9) tells us what condition the weights have to satisfy to be an 

optimal solution. Thus, using this equation we can update the weights to satisfy the conditions. 

But, now that the weights have changed the betas have also changed and the conditions aren’t 

satisfied anymore. This procedure can be repeated many times and one can observe that with 

each iteration, the conditions are closer and closer to being satisfied. 

                                                           
10

 Different initial guesses might lead to different solutions. Thus, when a particular guess leads to a solution with 
negative weights, simply trying a different guess might lead to the desired solution with nonnegative weights. 
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This procedure is inspired by the “power method,” one of the simplest iterative 

algorithms to find an eigenvector from a general matrix,  . By iterating the multiplication many 

times or, equivalently, raising the matrix to a high power,     , one can find the eigenvector 

associated with the largest eigenvalue in absolute terms. The algorithm described above does 

the same, with one extra step: after calculating the covariances (or betas),    , one needs to 

invert and renormalize the resulting vector, as shown in Equation (8), before repeating the step. 

To formalize the iterative process just described, we define the procedure or algorithm 

with the following steps: 

1. Start with an initial guess for portfolio weights  ( ) (equal weight or the traditional risk 

parity approximation,   ⁄ ) and a stopping criterion or threshold,  . 

2. Calculate betas for all individual assets,   
( )

, with respect to the current portfolio  ( ). 

3. If the condition 

  √
 

   
∑ (  

( )
   

( )
 

 

 
)
 

 
      (18)  

is satisfied, stop. If not, calculate the new weights as 

 
  

(   )
 

 
  

( )⁄

∑     
( ) 

   

 
(19)  

 and go back to step 2. 

The only point that requires some explanation is the stopping condition in the final step. 

One alternative would be to use Equation (10), as all the TRCs have to equivalent. However, we 

think that expressing it as a standard deviation is more succinct and easier to program. (Recall 

that ∑     
 
     , so the average percentage TRC is just   ⁄ .) In the end both criteria work 

equally well. 

We have no mathematical proof that this second algorithm will generate a positive (or 

in fact any) solution, but in many numerical applications (see next section) this is exactly what 

we found. The fact that a well-defined covariance matrix is symmetric and positive-definite 

gives us some confidence in this regard, given the nice mathematical properties of such 

matrices. 

An interesting special case occurs when we have one or more uncorrelated assets (or 

groups of assets). It’s important to emphasize that individual correlations between two assets 

can be zero, and that a special case occurs only when one asset is uncorrelated with all other 
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assets, or when all assets in one group are uncorrelated with all assets in another group. These 

cases are unlikely to be found in actual datasets, but could arise in artificial examples or 

through restrictions imposed on the covariance matrix. In our simulations we found that in such 

cases, this second algorithm tends to cycle between two different partial solutions, but never 

converges. More specifically, the algorithm finds the optimal weights within each group of 

assets, but is not able to find the optimal combination between the two uncorrelated groups. 

Fortunately, there is a very simple strategy to fix this problem and still obtain an optimal 

solution. In the interest of space we present this solution and a numerical example in the 

Appendix. 

Note, while the second algorithm is simpler to implement, the first algorithm almost 

guarantees convergence and can be more efficient in terms of computation time; as such 

algorithm 1 is our preferred method for calculating risk parity weights.  Generally, both 

algorithms compute the same “optimal” risk parity solution as the original Maillard, Roncalli, 

and Teiletche (2010) equal risk contribution solution using non-linear optimization. 

 

Applications 

The proposed algorithms in this paper allow us to efficiently compute the portfolio weights for 

risk parity portfolios, based on the equal risk contribution and more realistic assumptions on 

asset class covariances.  We refer to this risk parity portfolio as optimal risk parity, as compared 

to naïve (  ⁄ ) risk parity, which ignores the covariance information and therefore does not 

achieve true “parity” in asset class contribution to portfolio volatility.  The improved 

computational efficiency relative to the traditional optimization approach using quadratic 

programming with non-linear constraints makes it possible to backtest a large number of 

optimal risk parity portfolios constructed on different universes for careful in-sample and out-

of-sample examinations. In this section, using three different datasets, we illustrate the 

property of risk parity portfolios. Our primary goal is to evaluate various portfolio strategies 

relative to optimal risk parity in terms of asset weight concentration and asset class risk 

contribution concentration. Our secondary goal is to compare the performance of these 

strategies over long horizons. 

We compare four annually-rebalanced strategies: equal-weight, minimum variance,   ⁄  

(naïve) risk parity and equal risk contribution (optimal) risk parity. We restrict all portfolios to 

have non-negative weights. These strategies have in common that they require no estimates of 

expected returns. Michaud (1989) and Best and Grauer (1991), among others, show that 

portfolio optimization is highly sensitive to errors or uncertainty in expected returns.  DeMiguel, 

Garleppi and Uppal (2008) show that equal weighting is generally superior to MVO portfolios 
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due to estimation errors in expected returns. Thus we choose to use strategies that require only 

estimates of second moments (variances and covariances). For a comparison between naïve 

risk parity and maximum Sharpe ratio (MVO) approaches we refer readers to Chaves, Hsu, Li, 

and Shakernia (2011). 

When evaluating asset class weight and risk concentration, we report the “Gini” 

coefficient. This measure is widely used by economists to measure income inequality (or wealth 

concentration) and then compare inequity across countries.11 The Gini coefficient ranges 

between zero (perfect equality) and one (perfect inequality). More recently, Maillard, Roncalli, 

and Teiletche (2010) have applied the Gini coefficient as a measure of portfolio concentration 

by computing risk contribution inequality (or risk contribution concentration). The Gini 

coefficient has an advantage over the more popular Herfindahl measure of portfolio 

concentration in that it is always unitized between 0 and 1 and, for our specific study, is more 

variable across different portfolio strategies, which allows for more useful comparisons. 

 

Asset Classes 

The first dataset comes from Morningstar EnCorr and contains 10 asset classes from January 

1991 through March 2012: BarCap Agg (BarCap US Agg Bond TR), investment grade bonds (BarCap 

US Corp IG TR), high-yield bonds (BarCap US Corporate High Yield TR), long-term Treasuries (BarCap 

US Treasury Long TR), long-term credit (BarCap US Long Credit TR), commodities (DJ UBS Commodity 

TR), REITs (FTSE NAREIT All REITs TR), S&P 500 (IA SBBI S&P 500 TR), MSCI EAFE (MSCI EAFE GR) and 

MSCI emerging markets (MSCI EM GR). It is meant to replicate a well-diversified investment with 

exposure to different types of risk. Excess returns and Sharpe ratios are calculated relative to 

the 30-day Treasury Bill (IA SBBI US 30 Day TBill TR). 

We start by reporting some summary statistics—annualized excess return, annualized 

volatility and correlations—over the entire sample. As Table 1 shows, there is significant 

variation across assets in terms of returns and volatilities. Commodities have the lowest return 

at 1.81%, whereas the best performers are REITs (8.46%), MSCI EM (7.81%) and HY bonds 

(6.67%). The most volatile asset classes are MSCI EM (23.96%), REITs (18.85%) and MSCI EAFE 

(16.97%), while the least volatile ones are the BarCap Agg (3.71%) and IG bonds (5.51%). This 

dataset is interesting because of these differences and because of some potential for 

diversification as seen in the correlations across asset classes. 
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 The Gini coefficient for a set of allocations or risk contributions,   , is calculated by first sorting them in non-

decreasing order (        )  and then computing:   
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Figure 1 shows, in the top graph, the portfolio weights assigned to each asset class 

assuming that we have perfect knowledge of the steady-state asset class risk parameters—that 

is we used the variance and covariance estimates computed from the entire sample for 

constructing the backtested portfolios. Note, that since forward-looking information was used 

for computing portfolio weights, the strategies are not real-time investable. The perfect 

foresight portfolio solution addresses the efficacy of various portfolios in creating “risk” parity 

when the risk parameters are known. Later, we report results using only non-forward-looking 

data to test the impact of noisy estimation of the risk parameters on these methodologies. 

   Minimum variance is heavily concentrated in the BarCap Agg Index with a weight of 

roughly 90%. HY bonds and commodities have small allocations and most other asset classes 

have a zero weight. The two risk parity strategies have very similar weights, showing that we 

can achieve excellent risk diversification with the naïve   ⁄  method. These results are 

confirmed in the lower graph of Figure 1, which shows the risk contribution of each asset class 

as a function of the total portfolio variance. The optimal risk parity solution has perfectly 

distributed risk allocation.  However, the naïve risk parity is not very far behind, displaying only 

minor deviations from the optimal solution. The minimum variance portfolio is heavily 

concentrated in its allocation to the BarCap Agg Index, which is intuitive given its low volatility 

and correlations with other asset classes. The equal-weight portfolio has a relatively larger 

exposure to the more volatile asset classes (equities) and a relatively small exposure to less 

volatile ones (bonds). 

We also simulate the performance of annually rebalanced, no-look-ahead, strategies. 

These portfolios give us a more nuanced understanding of the strategies when we estimate the 

asset class risk parameters with noise and when these risk parameters are time-varying rather 

than constant over the full sample period. Note, since these strategies are investable, they are, 

therefore, of greater relevance for assessing the usefulness of the different methods. The 

dataset is limited to monthly frequencies; at each annual rebalance, we use the previous five 

years of data (60 observations) to estimate the covariance matrix. We omit an asset class if it 

does not have five years of data at the rebalance date. 

Table 2 shows the results; we include the traditional 60/40 equities/bonds portfolio for 

comparison. Unsurprisingly, minimum variance has the lowest volatility amongst the various 

portfolio strategies, at only 6%. The two risk parity strategies (naïve and optimal), respectively, 

have volatilities of 7.4 and 7.5%. In terms of Sharpe ratio, equal-weight and the two risk parity 

strategies have similar SR of roughly 0.65, outperforming minimum variance and the 60/40 

portfolio, which has SR of 0.49 and 0.48, respectively. 

The most interesting insight, however, is provided by the Gini coefficients for the 

various methodologies. First we examine the Gini coefficient associated with the allocation to 
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asset classes (or asset class weight concentration). For each strategy, we calculate the Gini 

coefficient for each month and then report the average coefficient over the entire sample. 

Equal-weight, for instance, has a value of zero at each rebalance date, but then the portfolio 

weights drift with price movements (and the Gini coefficient drifts upward away from 0) during 

the year until they are rebalanced again at yearend. This explains why equal-weight has a non-

zero value of 0.01 instead of a zero Gini coefficient as one might expect. Minimum variance and 

the 60/40 portfolio have very high coefficients of 0.81 and 0.82, respectively, highlighting their 

concentration in a small number of asset classes. Both risk parity strategies have lower 

coefficients of 0.29 (optimal) and 0.30 (naive), confirming their superior asset class weight 

parity. 

In terms of risk allocation to each asset class, the Gini coefficients comparisons are more 

extreme and more illustrative.12 Both risk parity strategies have significantly lower Gini 

coefficients when compared to the other strategies. While the minimum variance, 60/40 and 

equally weighted portfolio have coefficients of 0.72, 0.90 and 0.39, the naïve and optimal 

strategies have coefficients of 0.14 and 0.12, respectively. The 60/40 result is clearly 

unsurprising since it is well known that the 60/40 portfolio volatility is largely dominated by 

equity risk. Perhaps more surprising is the observation that the minimum variance portfolio, 

which is generally considered a low risk portfolio, is significantly more concentrated in asset 

class risk; specifically, its volatility dominated by duration risk, arising from its 80%+ allocation 

to the BarCap Agg index. We note that the naïve risk parity portfolio does a surprisingly 

commendable job of sourcing volatility risk from each asset class evenly; it is only slightly more 

concentrated in its asset class risk allocation relative to the optimal risk parity portfolio. 

However, since we can compute the optimal risk parity weight exactly using the algorithms 

proposed in this paper, there is little reason to favor the naïve solution, which can be non-

robust (see Chaves, Hsu, Li and Shakernia (2011)). Note, the asset class risk allocation Gini 

coefficient for the optimal risk parity is not zero, because we compute risk contribution using ex 

post realizations. At each rebalance date, the optimal portfolio does have an ex ante risk 

allocation Gini coefficient of zero with respect to the historical covariance matrix.  However, as 

correlations and volatilities might be time-varying and /or imprecisely measured, the ex post 

Gini could deviate significantly from the ex ante expectation.  

 We also note that asset class risk contribution as defined by Equation (4) is different 

from the portfolio’s risk factor exposure as defined by the emerging literature on risk-factor-

based risk parity strategies (see Bhansali (2011), Chaves, Hsu, Li and Shakernia (2012) and 

                                                           
12

 The percentage of risk allocation to each asset is its total risk contribution (   , defined in Equation (4)) divided 
by the total portfolio variance. When computing the Gini coefficient for the risk allocations, we use the full-sample 
to calculate variances and covariances. 
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Lohre, Opfer, and Orszag (2012)).  Therefore, parity in asset class contribution to the portfolio’s 

total volatility should not be confused with parity in the true underlying risk factor exposure. 

 

Commodities 

The second dataset comes from Bloomberg and includes 28 commodity futures sub-indices 

calculated by Dow Jones from January 1991 through June 2012: Aluminum (DJUBSAL), Brent 

Crude (DJUBSCO), Cocoa (DJUBSCC), Coffee (DJUBSKC), Copper (DJUBSHG), Corn (DJUBSCN), 

Cotton (DJUBSCT), Cattle (DJUBSFC), Gas Oil (DJUBSGO), Gold (DJUBSGC), Heating Oil 

(DJUBSHO), Lead (DJUBSPB), Lean Hogs (DJUBSLH), Live Cattle (DJUBSLC), Natural gas 

(DJUBSNG), Nickel (DJUBSNI), Orange Juice (DJUBSOJ), Platinum (DJUBSPL), Silver (DJUBSSI), 

Soybean Meal (DJUBSSM), Soybean Oil (DJUBSBO), Soybeans (DJUBSSY), Sugar (DJUBSSB), Tin 

(DJUBSSN), Gasoline (DJUBSRB), Wheat (DJUBSWH), WTI Crude (DJUBSCL) and Zinc (DJUBSZS). 

In the interest of space we do not report the summary statistics for the commodity 

components and jump directly to the portfolio simulations. Historical returns, correlations and 

variances for commodity futures can be found easily in Erb and Harvey (2006), Gorton and 

Rouwenhorst (2006), or Chaves, Kalesnik, and Little (2012), among others. Similar to before, the 

portfolios are also rebalanced annually. However, we estimate the covariance matrix using daily 

data and a backward-looking three-year window; the availability of daily data allows us to use a 

shorter rolling window to capture time-varying covariances while simultaneously improve 

estimation reliability statistically. The commodity dataset is interesting because of the high 

diversity in risk characteristics in commodities (including acyclical, counter-cyclical and pro-

cyclical commodities). 

Table 3 shows that the equal-weight portfolio outperforms the other portfolios with a 

Sharpe ratio of 0.35, closely followed by the naïve and optimal risk parity portfolios with SR of 

0.33 and 0.29, respectively. The minimum variance portfolio of commodities again has a 

relatively high asset class risk contribution Gini coefficient at 0.57. The Gini coefficient for the 

equally weighted commodities is 0.25. By comparison, again, the risk parity strategies are much 

less concentrated in their asset class risk contribution; the asset class risk contribution Gini 

coefficients are 0.10 (optimal) and 0.18 (naïve). Again, the optimal risk parity portfolio provides 

a better ex post “parity” is risk contribution from the underlying investment than naïve risk 

partiy.  

 

Equities 
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For equities we consider three different equity universes obtained from Ken French’s data 

library.  The data sample extends from January of 1965 through to December of 2011. The first 

data universe contains 10 industry portfolios (non-durables, durables, manufacturing, energy, 

high-tech, telecom, retail, health, utilities and others); the second contains 49 sub-industry 

portfolios; the third contains 25 portfolios sorted on size and book-to-market. These universes 

are interesting because they represent relatively more homogeneous universes—the 

“securities” in each of the universes are relatively more similar in returns, variances and 

pairwise correlations than the previous two examples using universes of asset classes and 

commodities. 

Table 4 shows the summary statistics for the 10 industry portfolios. We do not include 

the summary statistics for the other universes due to space constraint. There is some variation 

in returns and variances, but less than in the first (asset classes) and second (commodities) 

example. Further, notice that the correlations are positive and the majority of them are in 

excess of 0.5. The result of this is seen in Figure 2. Using the entire sample, all four strategies 

look strikingly similar, with only minimum variance showing some variability in portfolio 

weights or risk contribution.  

Tables 5, 6 and 7 show the portfolio characteristics for equity portfolio strategies 

constructed from the three universes. Again, portfolios are rebalanced annually; similar to what 

is done in the commodities section, we use a three-year window of daily returns to estimate 

the covariance matrix. We note that in each case, the different strategies have very similar 

performance in terms of Sharpe ratios; the minimum variance portfolio constructed from the 

25 size x book-to-market portfolios is the only exception, where it displayed a significantly 

better SR relative to equal-weighting and the two risk parity strategies.  Again, we observe the 

same pattern in the Gini coefficient for asset class risk contribution.  In each case, minimum 

variance strategy has the highest Gini. For the 10- and 49-industry universe, the optimal risk 

parity is more risk balanced than naïve risk parity than the equally weighted portfolio.  

However, for the 25 size x book-to-market portfolio, the Gini coefficient for the two risk parity 

portfolios and the equally weighted portfolio are the same.  This suggests that the pairwise 

correlations and the volatilities are similar for the universe, which we confirm with our 

calculations not reported here. 

From our portfolio backtests using various datasets, we confirm that naïve risk parity 

based on   ⁄  is generally effective at improving “parity” in asset class contribution to the total 

portfolio risk relative to other standard portfolio strategies.  However, we also show that in all 

cases, the more sophisticated risk parity approach, which uses the full covariance matrix 

information to ensure “true” risk parity, always results in better “parity” in asset class risk 

contribution. 
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Conclusion 

In this paper we propose two algorithms for computing portfolio weights for risk parity 

portfolios, in which each asset component equally contributes to the total portfolio variance. 

Our algorithms represent a significant simplification relative to the traditional optimization 

methods for solving non-linear minimization, because they do not involve optimization and are 

based on simple matrix algebra. The improved computational efficiency allows us to more 

effectively calculate the optimal risk parity portfolio weights and simulate portfolio backtests 

for examination. 

We compare the optimal risk parity portfolio to the naïve risk parity solution based on 

  ⁄  and to other popular portfolio solutions like equal weighting and minimum variance 

weighting. We find that risk parity portfolios, both naïve and optimal, do provide superior 

diversification in asset class risk contribution. That is, each of the included asset classes does 

provide relatively more equal contribution to the total portfolio volatility versus other portfolio 

strategies, as measured by the risk allocation Gini coefficient.  The optimal risk parity portfolio, 

which we can now compute easily with the proposed algorithms, in all situations, provides the 

best ex ante and ex post “parity” in asset class risk contribution.    

 

 

Appendix 

What about Uncorrelated Assets? 

As discussed in the text, uncorrelated assets provide a challenge to the second algorithm, 

because the algorithm cycles indefinitely and never converges. This issue is not very important 

in practice, since it is rare to find an asset that is perfectly uncorrelated with all the other assets 

in the selection universe. However, we could still argue that in some special situations one 

might want to impose certain restrictions or views on the correlation matrix and, as a result, 

introduce zero correlation assumption. Fortunately, there is a simple solution to this problem. 

We introduce here the simple case of two blocks of assets uncorrelated with each other, 

but the solution can be easily extended to more complex situations. The example in the next 

section makes the point clear. 
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Consider a universe of         assets, in which the first    are uncorrelated with 

the last   , i.e., all the assets in the first group have zero correlation with all the assets in the 

second group. Applying the algorithm proposed in the text, one can find the optimal risk parity 

weights,  (  )  [      ]’, for the portfolio composed only by the first    assets, and the 

optimal risk parity weights,  (  )  [            ]’, for the portfolio composed only by 

the last    assets. Denote the standard deviations of these two individual risk parity portfolios 

by  (  )
  and  (  )

 , respectively, so that the two-asset covariance matrix is 

  [
 (  )

  

  (  )
 ] (20)  

The next step involves finding the optimal risk parity portfolio between these two 

assets: the optimal portfolio  (  ) and the optimal portfolio  (  ). Denote the weights of this 

portfolio by    and        . The total variance of this portfolio can be written as 

   (     )
    

   (  )
    

   (  )
  (21)  

Because the total risk contributions are already equalized within each block, the only 

requirement imposed on this portfolio is that the TRCs are inversely related to the number of 

assets in each portfolio, or that the average TRCs are the same: 

  
  

   (  )
 

  
 

  
   (  )

 

  
 (22)  

The reason for this requirement is straightforward: we want the TRC of each asset in the first 

block to be the same as the TRC of each asset in the second block. Finally, Equation (23) is easily 

solved by: 

 

    

√  

 (  )
 

√  

 (  )
  

√  

 (  )
 

 

   

√  

 (  )
 

√  

 (  )
  

√  

 (  )
 

 

(23)  

The complete vector of       weights is finally calculated with 

   (     )  [    (  )     (  ) ]  (24)  
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Numerical Example with Uncorrelated Assets 

As an illustration of the procedure, consider the numerical example with four assets obtained 

from Maillard, Roncalli, and Teiletche (2010). The standard deviations are equal to 10%, 20%, 

30% and 40%, respectively. The correlation matrix is given by 

   [

   
      
         
             

] (25)  

Clearly, the first two assets are independent from the last two assets. Since each of the 

two blocks contains only two assets, the   ⁄  approximation is the actual solution for each 

block. This gives us 

 

   
 

   ⁄

 
   ⁄   

   ⁄
        

   
 

   ⁄

 
   ⁄   

   ⁄
        

(26)  

and 

 

   
 

   ⁄

 
   ⁄   

   ⁄
        

   
 

   ⁄

 
   ⁄   

   ⁄
        

(27)  

Using the weights in the equations above, one obtains a standard deviation of 12.65% 

for the first block and 17.14% for the second block. Because both blocks have the same number 

of assets, Equation (18) simplifies to the   ⁄  rule, yielding a weight of 57.54% for block one and 

42.46% for the second block. Finally, multiplying the weight of each block by the weight of each 

asset inside the block, we obtained the solution  

 

                        
                        
                        
                        

(28)  

which is the same solution obtained.   
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Table 1 – Asset Classes 

 Excess 
Return 

Volatility Correlations 

BarCap Agg 3.62% 3.71% 1 0.88 0.21 0.86 0.85 0.03 0.15 0.09 0.07 -0.01 

IG Bonds 4.28% 5.51%  1 0.53 0.65 0.96 0.19 0.33 0.29 0.30 0.24 

HY Bonds 6.67% 9.19%   1 -0.09 0.48 0.31 0.61 0.59 0.58 0.62 

Long Treasuries 5.51% 9.60%    1 0.73 -0.11 -0.05 -0.12 -0.14 -0.20 

Long Credit 5.41% 8.53%     1 0.13 0.33 0.27 0.28 0.22 

Commodities 1.81% 15.00%      1 0.27 0.30 0.43 0.41 

REITS 8.46% 18.85%       1 0.57 0.53 0.48 

SP 500 6.05% 15.04%        1 0.78 0.72 

MSCI EAFE 2.50% 16.97%         1 0.74 

MSCI EM 7.81% 23.96%          1 

 

 

Table 2 – Performance (10 Asset Classes) 

Strategy 
Excess 
Return 

Volatility 
Sharpe 
Ratio 

Gini Coef. 
Portfolio 

Allocation 

Gini Coef. 
Risk 

Allocation 

60/40 (SP500/BarCap Agg) 4.7% 9.8% 0.48 0.82 0.90 

Equal-Weight 5.6% 8.8% 0.63 0.04 0.39 

Min Var 2.9% 6.0% 0.49 0.83 0.72 

Naïve RP 4.7% 7.4% 0.64 0.30 0.14 

Optimal RP 4.7% 7.5% 0.63 0.29 0.12 
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Table 3 – Performance (Commodities) 

Strategy 
Excess 
Return 

Volatility 
Sharpe 
Ratio 

Gini Coef. 
Portfolio 

Allocation 

Gini Coef. 
Risk 

Allocation 

Equal-Weight 5.0% 14.3% 0.35 0.09 0.25 

Min Var 1.0% 9.5% 0.11 0.73 0.57 

Naïve RP 4.3% 12.9% 0.33 0.19 0.18 

Optimal RP 3.5% 11.8% 0.29 0.25 0.10 

 

 

Table 4 – 10 Industries 

 
Excess 

Returns 
Volatility Correlations 

Non-Durables 7.07% 15.17% 1.00 0.67 0.82 0.49 0.59 0.61 0.83 0.77 0.61 0.83 

Durables 1.98% 22.11% 
 

1.00 0.84 0.47 0.68 0.60 0.76 0.52 0.45 0.79 

Manufacturing 4.95% 17.48% 
  

1.00 0.63 0.77 0.63 0.83 0.70 0.54 0.89 

Energy 6.54% 18.88% 
   

1.00 0.45 0.41 0.43 0.43 0.58 0.58 

Hi-Tech 3.56% 23.06% 
    

1.00 0.61 0.71 0.61 0.32 0.71 

Telecomm 3.33% 16.42% 
     

1.00 0.62 0.53 0.51 0.66 

Retail 5.57% 18.40% 
      

1.00 0.67 0.47 0.83 

Health 6.09% 17.18% 
       

1.00 0.47 0.71 

Utilities 4.07% 14.17% 
        

1.00 0.59 

Other 3.88% 18.75% 
         

1.00 

 

 

Table 5 – Performance (10 Industries) 

Strategy 
Excess 
Return 

Volatility 
Sharpe 
Ratio 

Gini Coef. 
Portfolio 

Allocation 

Gini Coef. 
Risk 

Allocation 

Equal-Weight 5.7% 15.2% 0.38 0.04 0.11 

Min Var 5.1% 13.1% 0.39 0.82 0.75 

Naïve RP 5.8% 14.7% 0.40 0.12 0.08 

Optimal RP 5.9% 14.5% 0.41 0.14 0.04 
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Table 6 – Performance (49 Industries) 

Strategy 
Excess 
Return 

Volatility 
Sharpe 
Ratio 

Gini Coef. 
Portfolio 

Allocation 

Gini Coef. 
Risk 

Allocation 

Equal-Weight 5.9% 17.6% 0.34 0.05 0.11 

Min Var 5.4% 13.1% 0.41 0.92 0.82 

Naïve RP 6.1% 16.9% 0.36 0.14 0.10 

Optimal RP 6.2% 16.7% 0.37 0.16 0.09 

 

 

 

Table 7 – Performance (25 Size and Book-to-Market Portfolios) 

Strategy 
Excess 
Return 

Volatility 
Sharpe 
Ratio 

Gini Coef. 
Portfolio 

Allocation 

Gini Coef. 
Risk 

Allocation 

Equal-Weight 7.3% 18.3% 0.40 0.03 0.10 

Min Var 9.0% 16.9% 0.53 0.89 0.71 

Naïve RP 7.6% 18.0% 0.42 0.11 0.10 

Optimal RP 7.6% 18.0% 0.42 0.11 0.10 
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Figure 1: Portfolio Weights and Risk Allocations (10 Asset Classes) 
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Figure 2: Portfolio Weights and Risk Allocations (10 Industry Portfolios) 

 

 


