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Introduction 
The pioneering achievement of Markowitz (1952) gives concrete meaning to the concepts of 
“diversification” and “risk/return tradeoff,” providing a solid theoretical foundation for the edifice of 
modern portfolio theory. The objective of the Markowitz framework is to construct mean-variance 
efficient portfolios with maximum expected return for a given level of risk. The optimization process 
requires two inputs: (a) the asset expected returns, and (b) the asset covariance matrix.  

While the Markowitz framework is sound in theory, several pitfalls may complicate successful 
implementation in practice. For instance, Michaud (1989) argues that optimizers are essentially “error 
maximizers.”  The basic problem is that optimizers treat the inputs as if they were exact quantities, while 
in reality they can only be estimated with error. Optimizers, therefore, tend to place large bets on stocks 
with large estimation error in expected returns, often leading to poor out-of-sample performance. 
Similarly, optimizers may take large offsetting positions in assets with large in-sample correlations and 
small return differentials. If these correlations do not persist out-of-sample, the result may be higher-
than-expected portfolio risk.  

Muller (1993) demonstrated empirically that risk models do, in fact, tend to underestimate the risk of 
optimized portfolios. He suggested, as a rule of thumb, that volatility forecasts be scaled up by 20 
percent to remove the biases. It should be stressed, however, that the amount of scaling depends on 
the risk model under consideration. For instance, a poorly conditioned covariance matrix may require a 
much larger correction to remove the optimization bias. 

More recently, Shepard (2009) derived an analytic result for the magnitude of the volatility bias for 
optimized portfolios. Assuming normality and stationarity, he showed that the true expected volatility 

True  of an optimized portfolio is given by the predicted volatility Pred  divided by a correction factor 

 1 /
Pred

True N T

 


 ,                                                           (1) 

where N  is the number of assets and T  is the number of observations. For instance, if 100 
observations are used to compute a covariance matrix for 50 assets, the realized risk of an optimized 
portfolio will be about double the predicted risk.  

In this paper, we investigate the underlying sources for the biases of optimized portfolios. We identify 
special portfolios, termed eigenfactors, that exhibit large systematic biases in the risk forecasts. We 
show that the magnitude of these biases can be estimated by numerical simulation, and that the 
covariance matrix can be adjusted to remove these biases. We further demonstrate that removing the 
eigenfactor biases essentially removes the optimized portfolio biases as well. Finally, we study the 
performance of optimized portfolios, and show that the eigenfactor methodology is effective at 
reducing the out-of-sample volatilities of these portfolios. 
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Sample Covariance Matrices 
We construct the sample covariance matrix using the relative return of stocks,  

M
nt nt tf r R   ,                                                              (2) 

where ntr  is the return of stock n  on day t , and M
tR  is the “market” return, defined as the cap-

weighted estimation universe return. Note that the cap-weighted relative returns, by construction, sum 
to zero each period. 

For simplicity, we exclude from our estimation universe all stocks with incomplete histories. More 
specifically, we select the 50 largest US stocks as of July 30, 2010 that have full daily return histories 
dating back to July 1, 1993 (a total of 4,303 trading days). 

We estimate the sample covariance matrix 0V  using rolling windows of 200T   days. The individual 

matrix elements are given by the standard expression, 

  0
1

1( )
1

T

mt m nt n
t

mn f f f f
T 

  
 V  .                                           (3) 

Here, the index n  ranges over the number of stocks. In addition, we let the 0n   element correspond 

to the market return, i.e., 0
M

t tf R . In this formulation, every stock has an exposure of 1 to the market. 

Using a variable to represent the overall market is akin to using a world factor in a global equity risk 
model, as described by Menchero, Morozov, and Shepard (2010). 

 

Bias Statistics 
Bias statistics are used to test the accuracy of risk forecasts. Let tR  be the return of a test portfolio on 

day t , and let t  be the predicted volatility at the start of day. The standardized return is given by 

t
t

t

R
b


  ,                                                               (4) 

and essentially represents a z-score. The standard deviation of the standardized returns, known as the 
bias statistic, is given by 

 2

1

1
1 t

t

B b b


 

 
   ,                                                    (5) 

where   is the number of days in the testing window. Since 200 trading days are required to estimate 
the first covariance matrix, the testing window is 4,103 trading days (from April 15, 1994 to July 30, 
2010).  
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Roughly speaking, the bias statistic represents the ratio of realized risk to predicted risk. Therefore, we 
expect 1B   for accurate risk forecasts. Of course, the bias statistic will never be exactly 1, even for 
perfect risk forecasts. Instead, it is customary to identify a confidence interval. Assuming normality and 

perfect forecasts, the 95-percent confidence interval is approximately 1 2 / .  

For real financial data, however, this confidence interval is overly strict (especially for large  ). First, it is 
not possible to have a perfect forecast; at best, we can have an unbiased estimate of volatility. If the 
denominator of Equation 4 is noisy but unbiased, then by Jensen’s inequality (see Wasserman 2004, for 
instance) we expect the average bias statistic to be slightly greater than 1. Second, real financial data 
have fat tails; this further reduces the number of observations falling within the confidence interval. In 
this paper, however, we will not concern ourselves with minor deviations from 1B  . Instead, our focus 
is to use the bias statistic as a tool to identify large systematic biases in risk forecasts. 

 

Non-Optimized Portfolios 
Individual stocks represent the first set of non-optimized portfolios that we consider. In Figure 1(a), we 
report stock-level bias statistics for the returns of Equation 2. The stocks are sorted in ascending order 
by their realized volatility over the sample period. We see that most of the bias statistics are quite close 
to 1, indicating that the sample covariance matrix 0V  provides accurate risk forecasts at the individual 

stock level.  

Next, we test the accuracy of risk forecasts on a set of 100 random portfolios. The returns in this case 
are given by  

l l
t n nt

n

R f   ,                                                            (6) 

where ntf  are the asset returns of Equation 2, l
n  are drawn from a standard normal distribution, and l  

denotes the portfolio number. The weight of the market is set to zero (i.e., 0 0l  ), so that the random 

portfolios are strictly dollar neutral. In Figure 1(b) we show bias statistics for these random portfolios. 
Again, they are quite close to 1, indicating that the sample covariance matrix provides accurate risk 
forecasts for random portfolios as well. 

 

Eigenfactors 
The sample covariance matrix 0V  provides the predicted covariance between any pair of assets, as 

defined by Equation 2. We refer to this as the “standard basis.” The assets in the standard basis are 
intuitive and have clear financial interpretation. In this case, for instance, the assets correspond to 
portfolios that go long the stock and short the market. The off-diagonal terms, being non-zero, indicate 
that the assets are correlated in the standard basis.  
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The covariance matrix, however, can always be “rotated” to an alternative basis representing different 
linear combinations of the original assets. One basis that is of particular interest is the diagonal basis, in 
which the off-diagonal elements are all zero. The “assets” in the diagonal basis are termed eigenfactors, 
whose predicted variances are given by the diagonal matrix elements. The off-diagonal elements, now 
being zero, indicate that the eigenfactors are mutually uncorrelated.  

The return of eigenfactor k   on day t  is given by  

k k
t nt nt

n

R u f   ,                                                            (7) 

where k
ntu  is the weight of asset n  in the eigenfactor portfolio (see Appendix A for further details). Note 

that the number of eigenfactors is equal to the dimensionality of the sample covariance matrix1. We 
follow the convention of sorting the eigenfactors in ascending order by predicted volatility.  

Eigenfactors are not economically intuitive. However, they do play an important role in portfolio 
optimization. For instance, the first eigenfactor solves for the minimum variance portfolio subject to the 
constraint that the sum of squared weights adds up to 1. Similarly, the last eigenfactor solves the 
corresponding maximum variance problem. 

This suggests that the problem of underestimation of risk of optimized portfolios may be related to 
eigenfactors. To investigate this further, we compute bias statistics for the eigenfactor portfolios defined 
by Equation 7. The results are plotted in Figure 1(c): we find a very strong relationship between the bias 
statistic of the eigenfactor and the eigenfactor number. More specifically, the smallest eigenfactors (i.e., 
those with the lowest variances) have bias statistics far greater than 1, indicating that 0V  strongly 

underestimates the risk of these portfolios. For the largest eigenfactors, by contrast, the sample 
covariance matrix slightly overpredicts risk. This should not be too surprising, perhaps, since the largest 
eigenfactor solves the maximum variance problem and, naturally, is also subject to estimation error.  

 

Optimized Portfolios 
While the eigenfactor biases are certainly intriguing, the biases of optimized portfolios are of more 
direct interest for portfolio construction purposes. To study these biases, we generate random alpha 
signals (for 1, 100j  ) 

j j j
nt n t     ,                                                            (8) 

                                                            
1 Mathematically, we have 51 eigenfactors, which we label 0,...,50k  . It is interesting to consider the scenario in which the stock weights are constant over 

the 200-day estimation window. In this case, the smallest eigenfactor ( 0)k   would have exactly zero variance. This represents the cap-weighted asset returns 

of Equation 2 summing to zero; i.e., 0
0 0tu  , with 0

ntu  exactly proportional to the cap weights of the stocks. The 0k   eigenfactor therefore reflects an exact 

colinearity in the return structure; it is not an investable portfolio since the market exposure ( 0)n   does equal the sum of stock exposures ( 1,50)n  . In 

reality, stock weights are not constant in time, and these results are only approximate.  
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where j
n  is drawn from a standard normal distribution and j

t  is the cap-weighted mean of j
n  on 

day t . This form ensures that the stock alphas j
nt  are cap-weighted mean zero at the start of each day. 

We then use the sample covariance matrix 0V  to construct the minimum volatility portfolio under the 

constraint2 that the portfolio have an alpha of 1 (i.e., 1P  ). The portfolio return is expressed as 

j j
t nt nt

n

R h f   ,                                                              (9) 

where the optimized weights j
nth  are defined in Appendix B. 

In Figure 1(d), we see that the bias statistics for the optimized portfolios range between 1.4 and 1.5, 
with the average being about 1.45.  According to Equation 1, the expected bias statistic for 50N   and 

200T   should be 1.33. This suggests that deviations from normality and stationarity in real financial 
data magnify the effects of estimation error and that stronger corrections are required to completely 
remove the biases of optimized portfolios. 

 

Simulated Eigenfactor Biases 
The previous section demonstrates that the sample covariance matrix 0V  produces systematic biases in 

the risk forecasts of eigenfactor portfolios. In this section, we investigate whether these biases can be 
estimated by numerical simulation. Technical details are provided in Appendix A. 

The true covariance matrix, of course, is unobservable. Instead, we are restricted to a single sample that 
we can only observe with estimation error. However, we will pretend for a moment that the sample 
covariance matrix 0V  represents the “true” covariance matrix. We then use the “true” covariance 

matrix to simulate M  sets of stock returns3 that we use, in turn, to estimate M  simulated covariance 
matrices mV  ( 1, )m M . We diagonalize the simulated covariance matrices to construct the simulated 

eigenfactors. We also use the simulated covariance matrices mV  to compute the predicted volatilities of 

the simulated eigenfactors. However, since we know the actual distribution that generated the 
simulated returns, we can therefore use the sample covariance matrix 0V  to compute the “true” 

volatilities of the simulated eigenfactors. Comparing the true volatilities to the predicted volatilities 
allows us to estimate the simulated biases. 

We repeat this exercise for every day t  over the entire sample period and study the nature of the 
simulated volatility biases across time. The simulated volatility bias of eigenfactor k  at time t  is given 
by 

                                                            
2 We also impose the investability constraint that the market exposure ( 0)n   equal the sum of the stock exposures ( 1,50)n  . 

3 Our simulations assume normality and stationarity. 
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( )1( )
( )

mt
t

m mt

k
k

M k




  
 ,                                                          (10) 

where ( )mt k  is the “true” volatility (given by 0V ) of the simulated eigenfactor, and ( )mt k  is the 

predicted volatility (given by mV ). To understand the average simulated bias across time, we compute  

1( ) ( )t
t

k k
T

    ,                                                            (11) 

and plot the results in Figure 2. The smallest eigenfactor has a mean simulated bias of about 1.5, 
whereas the largest eigenfactor has a mean bias of about 0.96. Qualitatively, Figure 2 is in excellent 
agreement with Figure 1(c), indicating that numerical simulation can indeed capture the main features 
of the empirical biases. Quantitatively, however, we see that the empirical biases in Figure 1(c) are 
slightly larger than the simulated biases in Figure 2. This can again be attributed to deviations from 
normality and stationarity, which are assumed in the simulations but are violated in practice.  

It is also informative to study the stability of the simulated volatility bias across time. To this end, we 

sort the values ( )t k  in ascending order for each eigenfactor k , and let ( )p k  denote the p-percentile 

value. In Figure 2, we plot ( )p k  for 1p   and 99p   percentiles. We see that the eigenfactor biases 
are remarkably stable across time. For instance, over roughly a 16-year period, the simulated volatility 
bias for the smallest eigenfactor varies within the narrow range of 1.4 to 1.6 about 98 percent of the 
time. Similarly, for the largest eigenfactor, the range varies from 0.9 to 1.0 over this same time period.  

 

Eigen-Adjusted Covariance Matrices  
In the previous section, we showed that numerical simulation could be used to estimate the volatility 
biases of eigenfactors. The simulations, however, assume normality and stationarity, which are violated 
in practice. Consequently, additional scaling is required to fully remove the biases of the eigenfactors, as 
described in Appendix A (see Equation A8). 

Once we have estimated the size of the eigenfactor biases, we assume that the sample covariance 
matrix 0V , which uses the same estimator as the simulated covariance matrices mV , also suffers from 

the same biases. We then rotate the sample covariance matrix to the diagonal basis and de-bias the 
eigenvariances. The final step is to “rotate back” to the standard basis representing the individual 

stocks; this leads to the eigen-adjusted covariance matrix that we denote 0V . The procedure is 

described in more detail in Appendix A. 

Note that the diagonal elements of 0V  and 0V , in general, differ. Therefore, it is possible that the 

eigen-adjustment procedure will induce biases in the volatility forecasts of individual stocks. To 
investigate this, we compute stock-level bias statistics for the returns of Equation 2. The results are 
reported in Figure 3(a), with the stocks again rank-ordered from low volatility to high volatility. We find 
a definite relationship between the bias statistic and the volatility of the stock. More specifically, the 
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lowest volatility stocks have bias statistics of about 0.90, whereas the highest volatility stocks have bias 
statistics of about 1.10.  

We can understand these biases as follows. First, note that Equation 7 expresses every eigenfactor as a 
linear combination of stocks. This relationship can also be inverted. That is, every stock can be expressed 
as linear combination of eigenfactors,  

n k
nt kt t

k

f u R  ,                                                            (12) 

where n
ktu  is the “weight” of eigenfactor k  in stock n 4. Mathematically, the coefficient n

ktu  measures 

how strongly a given stock “projects” onto each eigenfactor. We find that low-volatility stocks tend to 
project more strongly on the small eigenfactors, whereas the high-volatility stocks preferentially project 
on the large eigenfactors.  

To illustrate this effect, we consider the projections on analysis date July 30, 2010 for two particular 
stocks: Chevron and Citigroup. The former had the lowest predicted volatility (13.7 percent) on the 
analysis date, whereas the latter had the highest predicted volatility (31.7 percent). We compute the 

squared projection coefficients 2( )n
ktu  and aggregate them within eigenfactor bins5. The results are 

presented in Figure 4. We clearly see that Citigroup projects primarily on the largest eigenfactors, 
whereas Chevron projects mostly on the smallest ones. Since the smallest (or largest) eigenfactors have 
their volatilities increased (or decreased) by the eigen-adjustment methodology, this explains the 
observed biases in Figure 3(a).  

While the eigenvariance adjustment does induce small biases at the stock level, note that the average 
bias is about zero. In other words, some stocks are biased slightly upward, while others are biased 
slightly downward. This is in contrast to Figure 1(d), which shows that for optimized portfolios all risk 
forecasts are systematically biased downward by a large amount. 

Of course, the main purpose of a risk model is to compute portfolio risk, not individual stock risk. It is 
likely that the biases observed at the stock level largely cancel at the portfolio level. To test this 
hypothesis, we compute bias statistics using the same random portfolios given in Equation 6. The results 
are shown in Figure 3(b). We see that the average bias statistics are indeed very close to 1, indicating 
that the eigen-adjusted covariance matrix produces accurate risk forecasts for non-optimized portfolios. 

We now study the bias statistics of the eigenfactor portfolios using 0V . Note that the eigen-adjustment 

method does not affect the composition of the eigenfactors themselves, whose returns are still given by 
Equation 7. The bias statistics are plotted in Figure 3(c). We see that the eigen-adjusted covariance 
matrix has essentially removed the eigenfactor biases across the entire spectrum. 

Next, we consider optimized portfolios with returns given by 

j j
t nt nt

n

R h f   .                                                              (13) 

                                                            

4 Note that 
n
ktu  can also be interpreted as the weight of stock k  in eigenfactor n . Mathematically, this represents the 

k
ntu  element of the “transpose” matrix. 

5 An important property of the projection coefficients is that 
2( ) 1n

ktk
u  . 
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To obtain these holdings, we use the same alphas given by Equation 8, but now construct the holdings 

using the eigen-adjusted covariance matrix 0V . In Figure 3(d), we report the bias statistics for the 

optimized portfolios; we see that the biases have been essentially removed. Also note that the results 

are virtually indistinguishable from Figure 3(b), indicating that 0V  provides equally accurate risk 

forecasts for both optimized and non-optimized portfolios. 

 

Out-of-Sample Volatilities 
Removing the biases of optimized portfolios resolves a long-outstanding problem in risk modeling and 
quantitative investing. Nevertheless, of even greater importance to the quantitative manager is the out-
of-sample performance of optimized portfolios.  

The first optimized portfolio that we consider is the minimum-risk fully invested portfolio. This is crucial 
for portfolio construction purposes, since it constitutes the left-most point on the Markowitz efficient 
frontier. Reducing the out-of-sample volatility of this portfolio effectively raises the efficient frontier. 

We form the minimum-risk fully invested portfolio in two ways: one uses the sample covariance matrix 

0V ; the other uses the eigen-adjusted covariance matrix 0V . The portfolio holdings, described in 

Appendix B, are rebalanced daily. The cap-weighted estimation universe has a realized volatility of 19.84 
percent (annualized) over the out-of-sample period April 15, 1994 to July 30, 2010. Over this same 
period, the minimum-risk fully invested portfolio constructed using 0V  has a realized volatility of only 

14.64 percent, showing that the sample covariance matrix is an effective tool for hedging risk. 

Nonetheless, the minimum-risk fully invested portfolio constructed using 0V  has an even lower realized 

volatility at 13.98 percent. In other words, the eigenfactor approach reduces the out-of-sample volatility 
by about 4.5 percent relative to the sample covariance matrix.  

Another important class of optimized portfolios are the minimum-risk portfolios subject to 1P  . We 

construct two such sets of optimized portfolios: one is obtained using 0V , which results in the portfolios 

of Equation 9; the other is constructed using 0V , which produces the portfolios of Equation 13. Let R
l  

denote the realized out-of-sample volatility for optimized portfolio l  using the eigen-adjusted 

covariance matrix 0V , and let R
l  denote the corresponding volatility using the sample covariance 

matrix 0V . We define the realized volatility ratio as 

R
R l
l R

l

v






 ,                                                                (14) 

where 1,100l   denotes the optimized portfolio number. In Figure 5, we plot the resulting histogram 
of realized volatility ratios. We see that for every portfolio, the eigenfactor method leads to lower out-
of-sample volatility. The mean realized volatility ratio is 0.936, which represents a 6.4 percent reduction 
in risk on average. Since all portfolios by construction have the same alpha  1P  , this translates into 

a nearly 7 percent increase in Information Ratio. 
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N/T Effects 
Thus far, we have considered 50N   stocks with covariance matrices estimated over 200T   
periods. In this section, we vary the number of periods used to compute the covariance matrices from 

60T   to 500T  .  

We again consider minimum-risk optimized portfolios with 1P  . We form one set of optimized 

portfolios using 0V , with holdings given by Equation 9. The other set of optimized portfolios is 

constructed using 0V , leading to the holdings given by Equation 13. 

In Table 1, we present bias statistics and mean-realized volatilities for the two sets of optimized 
portfolios. We make several interesting observations. First, the portfolios constructed using the eigen-
adjusted covariance matrix have lower realized volatilities for every value of T . Second, the 
performance gap in realized volatility between the two methods increases in inverse proportion to the 
number of periods used to construct the covariance matrix. For instance, using 500T   observations 
results in a difference of only 6 bps, whereas for 60T   the realized volatilities using 0V  are more than 

double those obtained using the eigen-adjusted covariance matrix 0V . Third, in all cases the bias 

statistics are much closer to 1 using the eigen-adjusted covariance matrices. Fourth, the bias statistics 
using the sample covariance matrix increase dramatically as we decrease the number of periods in the 
estimation window. This is in accordance with Equation 1. Note, however, that the Equation 1 
consistently underpredicts the actual bias. For example, for 100T   days, Equation 1 predicts a bias 
statistic of 2.0, whereas Table 1 shows the actual bias statistic is 2.25.  

 

Conclusion 
We demonstrate that the sample covariance matrix produces biased risk forecasts for eigenfactor 
portfolios. This in turn leads to the classic problem of underestimation of risk for optimized portfolios. 
By de-biasing the eigenvariances, we effectively remove the biases in risk forecasts for optimized 
portfolios. We also demonstrate that the eigenfactor methodology is effective at reducing the out-of-
sample volatilities of these portfolios. 
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Appendix A: Eigenvariance De-biasing 
Let 0V  denote the xN N  sample covariance matrix, computed as  

0 1T





f fV  ,                                                                (A1) 

where f  is the xN T  matrix of realized asset returns and T  is the number of periods. The “assets” 
could represent factor portfolios, asset classes, or individual securities. We assume that the sample 
covariance matrix is full rank, which requires that the number of periods T  exceeds the number of 
assets N .  

The sample covariance matrix can be expressed in diagonal form as 

0 0 0 0D U VU  ,                                                             (A2) 

where 0U  is the xN N  rotation matrix whose columns are given by the eigenvectors of 0V . The nth 

element of the kth column of 0U  gives the weight of stock n  in eigenfactor portfolio k , as described by 

Equation 7 of the main text. These eigenfactors represent mutually uncorrelated portfolios of assets. 
The diagonal elements of 0D  represent the predicted variances of the eigenfactors.  

Although the true covariance matrix is unobservable, we suppose for simulation purposes that the 
sample covariance matrix 0V  governs the “true” return-generating process. We generate a set of asset 

returns for simulation m  as 

0m mf U b  ,                                                                 (A3) 

where mb  is an xN T  matrix of simulated eigenfactor returns. The elements of row k  of mb  are drawn 

from a random normal distribution with mean zero and variance given by the diagonal element 0 ( )D k  

of matrix 0D . It can be easily verified that the simulated returns in Equation A3 have a true covariance 

matrix given by 0V . Due to sampling error, however, the estimated covariance matrix  

1
m m

m T





f fV  ,                                                                (A4) 

will differ from the true covariance matrix 0V . Nevertheless, mV  is unbiased in the sense that 

  0mE V V . We diagonalize the simulated covariance matrix 

m m m mD U V U  ,                                                             (A5) 

where mU  denotes the simulated eigenfactors with estimated variances given by the diagonal elements 

of mD , i.e., ( )mD k .  
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Since we know the true distribution that governs the simulated asset returns, we can compute the true 
covariance matrix of the simulated eigenfactors, 

0m m mD U V U  .                                                            (A6) 

Note that since mU  does not represent the “true” eigenfactors, the matrix mD  is not diagonal. In 

principle, risk forecasts could be improved by adjusting the directions of the eigenfactors. In practice, we 
do not find such a benefit. Our focus here is on adjusting the variances of the eigenfactors. 

As described in the main text, the predicted variances of the simulated eigenfactors are biased. That is, 

 ( ) ( )m mE D k D k  .  We compute the simulated volatility biases 

( )1( )
( )

m

m m

D k
k

M D k
  


 ,                                                       (A7) 

where M  is the total number of simulations.  

Our simulations assume both normality and stationarity. Real financial data, of course, violate both of 
these assumptions. In practice, therefore, additional scaling is required to remove the biases of the 
eigenfactors. To obtain the “empirical volatility bias,” we simply scale the simulated volatility biases 
based on their deviation from 1, 

 ( ) ( ) 1 1k a k     ,                                                 (A8) 

where a  is a constant. Empirically, we find that 1.4a   is effective at removing the biases across the 
entire eigenfactor spectrum. In Table 1, we also use 1.4a   for all values of T . 

We now assume that the sample covariance matrix 0V , which uses the same estimator as the simulated 

covariance matrices mV , also suffers from the same biases. Let 0D  denote the diagonal covariance 

matrix whose eigenvariances have been de-biased  

2
0 0D γ D  ,                                                          (A9) 

where 2γ  is a diagonal matrix whose elements are given by 2 ( )k . The de-biased covariance matrix is 
now rotated back from the diagonal basis to the standard basis using the sample eigenfactors, 

0 0 0 0V U D U   .                                                            (A10) 

This represents the eigen-adjusted covariance matrix. 
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Appendix B: Holdings of Optimal Portfolios 
Let V  denote an asset covariance matrix. As shown by Grinold and Kahn (2000), the holdings of the 
minimum-risk fully invested portfolio are given by 

1

1C





V eh
e V e

 ,                                                            (B1) 

where e  is an N-dimensional column vector with 1 in every entry. Similarly, the minimum-risk portfolio 
with 1P   is given by 

1

1A





V αh
α V α

 ,                                                            (B2) 

where α  is an N-dimensional column vector of stock alphas. 
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Figure 1 

Bias statistics for (a) stocks, (b) random portfolios, (c) eigenfactors, and (d) optimized portfolios. Return 
sources are defined by Equation 2, Equation 6, Equation 7, and Equation 9, respectively. Bias statistics 
were computed using the sample covariance matrix 0V ; the out-of-sample testing period comprised 

4103 trading days from April 15, 1994 to July 30, 2010.  
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Figure 2 

Simulated volatility biases for eigenfactors. The circles give the mean-simulated volatility bias over 4,103 
trading days (April 15, 1994 to July 30, 2010). The up triangles give the 1-percentile bias, and the down 
triangles give the 99-percentile bias. 
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Figure 3 

Bias statistics for (a) stocks, (b) random portfolios, (c) eigenfactors, and (d) optimized portfolios. Return 
sources are defined by Equation 2, Equation 6, Equation 7, and Equation 13, respectively. Bias statistics 

were computed using the eigen-adjusted covariance matrix 0V ; the out-of-sample testing period 

comprised 4103 trading days from April 15, 1994 to July 30, 2010.  
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Figure 4 

Histogram of squared projection coefficients for Chevron (lowest-volatility stock) and Citigroup (highest-
volatility stock), as of July 30, 2010. The results are aggregated into eigenfactor bins. Low-volatility 
stocks tend to project on small eigenfactors, whereas high-volatility stocks project primarily on the 
largest eigenfactors. 
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Figure 5 

Histogram of realized volatility ratio, R R
l l  . Here, R

l  is the realized volatility of optimized portfolio 

l  using the eigen-adjusted covariance matrix 0V , and R
l  is the realized volatility using the sample 

covariance matrix 0V . The out-of-sample testing period is 4,103 trading days (from April 15, 1994 to July 

30, 2010). In all cases, the eigen-adjusted approach leads to lower out-of-sample volatilities. 
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Table 1 

N/T effects for optimized portfolios with 1P  . The number of stocks in the estimation universe is 

fixed at 50N  , while the number of days used to estimate the covariance matrix varies from 60T   
to 500T  . The out-of-sample testing period is 3797 trading days (from July 3, 1995 to July 30, 2010). 

 

    (Sample Covariance Matrix)      (Eigen-adjusted Matrix)
Days (T) Bias Stats Realized Vol Bias Stats Realized Vol

60 7.78 8.04 0.89 3.86
100 2.25 4.57 0.97 3.66
200 1.45 3.77 1.02 3.53
300 1.30 3.60 1.03 3.48
400 1.23 3.53 1.04 3.46
500 1.20 3.51 1.05 3.45  
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