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Abstract 

We propose a unique dynamic portfolio construction framework that improves 

portfolio performance by adjusting asset allocation in accordance with a forecast of 

market risk.  We find that modifying asset allocation according to our market risk 

barometer offers investors the promising opportunity to meaningfully enhance 

portfolio performance across market environments. 
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Risk-Based Dynamic Asset Allocation with Extreme Tails and 

Correlations 

Portfolio management is moving toward a more flexible approach capable of 

capturing dynamics in risk and return expectations across an array of asset classes [Li 

and Sullivan 2011].  The change is being driven, in part, by the observation that risk 

premiums vary as investors’ cycle between risk aversion and risk adoration and that 

the decision to invest—whether to take risk and how much—is the most important 

investment decision [Xiong and Idzorek 2010].   Certainly, managers should take 

risks, but only if the returns appear to represent fair compensation.  This all suggests 

that the traditional strategic approach of fixed-asset allocation is outmoded.   The 

challenge of portfolio choice is much more than merely selecting for inclusion 

uncorrelated asset classes that constitute significant economic exposure and then 

specifying a fixed proportion of each.1  

Our effort facilitates this much needed dynamic flexibility to the asset allocation 

process.  We propose a model of portfolio selection with heavy tails and dynamic 

return correlations.  The powerful intuition behind our approach is that proper 

portfolio construction is an ongoing, dynamic process that integrates time-varying 

risks of the various asset classes within the investor’s portfolio.   We develop a 

dynamic asset allocation framework that determines an investor’s optimal portfolio in 

accordance with changing global market environments and market conditions.   

Specifically, we consider how global return, variance, and covariance characteristics 

vary across time and states of global markets for a diversified portfolio of asset classes.  

We then use this dynamic information to consider the asset allocation implications in 

a practical setting.  Our novel approach builds on the regime switching framework of 

Ang and Bekaert (2002, 2004), Kritzman and Page (2011), among others, and provides 

a framework that illuminates the changing nature of global market risks and directs 

accordingly asset allocation and risk decisions. 

We argue that it is imperative for managers to monitor and react to changes in 

the macro-environment on an ongoing basis.  Our effort provides one such useful 

framework— a genuine barometer for monitoring risk dynamics across our global 

financial system and reacting to those market conditions across time. 

                                                           
1
 For further discussion on this topic, see Sullivan (2008) 
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The Framework for Dynamic Asset Allocation  

The framework we offer has important implications for portfolio risk 

management and asset allocation decisions.   It takes into account skewness and 

kurtosis, moments of the return distribution beyond mean and variance, as well as 

persistence in volatility, or volatility clustering, and correlations of risky asset returns 

which tend to increase during times of market turbulence, or return dependence.  Our 

non-linear model framework is more dynamic and less restrictive than traditional, 

static methods that depend on returns following a Gaussian process.  One practical 

application of our approach is that it provides a monitoring device regarding market 

instability and portfolio vulnerability.  Furthermore, we demonstrate that investors 

can act before the iceberg is under the ship’s keel.  The result is a high frequency, 

dynamic technique that allows investors to proactively monitor and manage portfolio 

risk via real-time asset allocation decisions. 

We dynamically and proactively determine asset weightings as conditioned on 

changing market volatility and covariances.  Asset allocation is further accomplished 

in accordance with one of two possible states of the world: normal risk (normal 

uncertainty: normal return volatility and correlations), and high risk (high uncertainty: 

high volatility and correlations).  Behind the two states lies a mechanism driven by 

factors determined to possess predictive power of the degree of economic and market 

uncertainty governed by forward transition probabilities where the regime variables 

are used to fit a Markov Regime Switching process [see Ang Bekaert 2002, 2004].  Our 

regimes correspond to market dynamics and the non-normal return distributions 

characterizing markets [e.g., Xiong and Idzorek 2011, and Sullivan, Peterson, 

Waltenbaugh 2010]. We do not model changes in expected returns, which are known 

to be particularly difficult and often leads to models biased by hindsight and model 

over fitting.   

At a high level, the strategy we propose consists of three main, overarching 

parts.  In the first part, we estimate the conditional value at risk (CVaR) for a market 

representative portfolio [Kaya, Lee, Pornrojnangkool 2009].  The estimated CVaR then 

serves as critical input into our second part, a forecast of market risk—modeling the 

probability that markets are in, or about to enter a turbulent financial period.  This 
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information then enables the third part— proactively adjusting the portfolio asset 

allocation in accordance with the market risk regime forecast obtained part 2. 

We begin by applying extreme value theory (EVT)2 which allows us to model fat-

tailed return distributions for a host of asset classes with particular attention to 

volatility clustering and extreme co-movements across various markets [e.g., Sullivan, 

Peterson, Waltenbaugh, 2010].  The asset classes included in our framework are: 

global equity, U.S. investment grade bonds, U.S. high yield bonds, commodities, and 

U.S. real estate investment trusts.  Our base case portfolio asset allocation, described 

in Exhibit 5, is constructed based on weights typically found in institutional portfolios, 

and close to the capital market weights. 

 We employ conditional value at risk (CVaR)3 to facilitate forward looking 

scenario-based outcomes outside the range of historical observations.  A two-state 

Markov-Switching model is applied to identify regimes in the forward-looking market 

downside risk measure, CVaR.   The CVaR then forms the basis for our dynamic risk 

and asset allocation framework by providing an indicator of downside risk across 

markets and for optimization in portfolio construction.    

Altogether, we build an effective regime-dependent investment strategy based 

on market downside risk and asset class co-movements across time.  To accomplish 

this task, we follow a dynamic asset allocation framework under a Mean-CVaR 

optimization approach with varying target CVaR according to market regimes.  The 

end result is an implementable tail risk management process in accordance with the 

increasingly interconnected and dynamic risks observed in markets.  

 

Data and Model Setup 

                                                           
2
 Readers are referred to Embrechts, Klüppelberg, and Mikosch [1997] for a comprehensive treatment of extreme 

value theory. 
3
 CVaR measures the expected loss during a given period at a certain confidence level. As a 

better alternative to VaR, it incorporates both the possibility and expected magnitude of loss. 

Moreover, it is coherent and convex and can readily be incorporated into discrete optimization 

process in risk management [Uryasev 2000 and Rockafellar 2002].  For example, a 95% 21-day 

CVaR of 20% means the investor expects to lose 20% within the 5% worst-case scenarios in a 
month. CVaR is known as mean excess loss for continuous distributions, and defined as the 

weighted average of VaR and losses strictly exceeding VaR for discrete distributions. 
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Exhibit 1 provides an overview of the five asset classes included in our analysis 

along with summary statistics.  All asset classes are represented by indexes in the 

following way: global equities by the Morgan Stanley Capital International ACWI Index 

(MSCI ACWI), commodities by the Goldman Sachs Commodity Index (SPGSCI) total 

return index, U.S. real estate by the Dow-Jones Wilshire REIT (DW REIT) total return 

index, U.S. high yields bonds by Merrill Lynch High Yield Master II (MLHY II) total 

return index, and U.S. investment grade bonds by the Barclays Capital Aggregate 

Bond Index (Barclays Agg.) gross return index.   All summary statistics are based on 

daily data (not annualized) from February 1, 1996 to October 10, 2011.  In reviewing 

Exhibit 1, we draw the reader’s attention to the negative skewness observed for almost 

every asset class (except REITS), and the excess kurtosis across all asset classes, 

especially for REITs and high yield bonds. 

 

Exhibit 1  

 

 

Consistent with prior research, further examination of the data reveal that 

autocorrelation is present in the return series, especially for day t+1.  This can be seen 

visually for MSCI ACWI by the autocorrelation functions for the log of daily returns 

and the square of log returns, or variance, shown in Exhibit 2 Panel A.  We return to 

address these issues which motive our analysis, later. 

 

Exhibit 2  
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Forecasting Market Risk 

For the first phase in our three-part framework—a daily forecast of the risk of 

the overall  portfolio—the model we employ for the joint fat-tailed distribution of 

returns and the subsequent calculation of CVaR involves the 5 main steps outlined 

below. 

1) Return Filtering.  We filter each daily return series using AR(1)/GJR-

GARCH(1,1) process to remove serial correlation and standardize the residuals; 

2) Marginal Distribution Modeling.  We employ a peaks-over-threshold 

method to estimate the marginal semi-parametric empirical CDF of the filtered 

standardized residuals from step 1 [e.g., Focardi, Fabozzi 2004, Tsay 2005].  We use a 

non-parametric Gaussian kernel to derive the interior portion of the distribution and a 

parametric GPD to estimate the left hand and right hand tails; 

3) Extremal Dependence Modeling.   We transform the standardized 

residuals from step 1 into uniform variates using the semi-parametric empirical CDF 

derived in step 2.  We then fit a t-copula to the transformed data to allow for joint ―fat‖ 

tails.   

4) Return Simulation.  Given the parameters of the t-copula, we simulate 21 

dependent uniform variates for all indices 10,000 times.   Then via the inversion of the 

semi-parametric marginal CDF for each index, we transform the uniform variates to 

standardized residuals that are independent in time but dependent at any point in 

time.  Last, we reintroduce the autocorrelation and volatility clustering observed in the 

original index using parameters obtained from step 1 to arrive at the simulated 21-day 

daily returns for all five asset classes.   

5) Risk Forecasting.  We forecast 21-day market representative portfolio risk 

with the the policy allocation as shown in Exhibit 5 serving as the baseline.  The 

average 21-day portfolio loss in the worst 5% scenarios based on the 10,000 

simulations becomes the portfolio 95% CVaR.  This CVaR is then used as the across 

market tail risk indicator in the second part of our three-part framework—regime 

dependent dynamic asset allocation.  Expected returns are also shown in Exhibit 5, 

and do not change for any regime environment. 
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We now discuss in more detail the five steps outlined above used to arrive at 

our dynamic, high-frequency estimate of portfolio risk using CVaR and extreme value 

theory (EVT).   Modeling the tails of a distribution using EVT requires the observations 

to be approximately independent and identically distributed (i.i.d).   As a consequence, 

we first filter our return series with the aim of the filtering process to produce 

approximately i.i.d observations.   To accomplish this objective, for each return series 

we fit a first order autoregressive model AR(1) to the conditional mean of the daily log 

returns using equation (1) and an asymmetric GJR-GARCH(1,1) [Glosten, et al., 1993] 

to the conditional variance using equation (2), below.    

                       (1) 

                                             (2) 

                                       

   

With this model, we address the so-called leverage effect whereby a negative 

association has been observed to exist between shocks to asset returns and future 

volatility [Black 1972].  Specifically, the last term of equation (2) incorporates 

asymmetry into the variance through the use of a binary indicator that takes the value 

of 1 which predicts a higher volatility for the subsequent day if the prior residual 

return is negative, and a takes on a value of 0 otherwise.   We then standardize the 

residuals by the corresponding conditional standard deviation as commonly done for 

such exercises.   Finally, the standardized residuals are modeled using the 

standardized Student’s t-distribution in order to capture the well-known fat tails in 

the distribution of returns.  

The result of this process is shown in Exhibit 2B which plots the 

autocorrelations of the standardized residuals for the MSCI ACWI return series.  As 

seen from Exhibit 2B, the filtering process we employ results in approximately i.i.d. 

observations and thus volatility clustering has been eliminated by the filtering process.   

The resulting standardized residual returns approximate a zero-mean, unit-variance, 

i.i.d series. This allows us to employ EVT estimation of the tails from our sample 

cumulative distribution function (CDF).     
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As EVT allows only for estimation of the tails of the distribution, we combine 

these tail distributions with a model for the remaining internal part of the distribution.   

To accomplish this task, we move to step 2 and follow the peaks-over- thresholds 

approach [McNeil 1997] and define upper and lower thresholds as that set of 

minimum residual returns (we use the 90th percentile) found each of the left hand and 

right hand tails.  The result is a partition of the standardized residuals into three 

regions; the lower tail, the interior, and the upper tail.  A non-parametric Gaussian 

kernel CDF is used to estimate the interior of the distribution.  We then fit those 

extreme residuals in each tail beyond the thresholds using EVT.  In particular, we use 

a parametric Generalized Pareto Distribution (GPD) estimated by maximum likelihood.  

The CDF of the GPD is parameterized using equation 3, with exceedances (y), tail 

index parameter (zeta) and scale parameter (beta). 

          
  

 
                        (3) 

Exhibit 3 shows a visual representation of the upper and lower tails of the return 

distribution for ACWI.  It shows that our GPD approach far better accommodates the 

fat tails observed historically in the return distribution.   As can seen from Exhibit 3, 

the GPD curve much more closely approximates the historical, or empirical, return 

distribution, and as such, allows for a more accurate representation of the reality of 

fat-tails. 

 

Exhibit 3  

 

With our fat-tailed conditional distribution of returns in place, we can now turn 

attention to the next important element in risk modeling, step 3— how asset class 

returns move together in the extremes.  For our extremal dependence model, we 

consider asset return covariances via the joint distribution of returns using copula 

theory (Focardi, Fabozzi 2004).  With copulas, we are able to model the observed 

increased co-dependence of asset class returns during periods of high market volatility 

and stress.   Empirically, not only do individual asset classes have ―fatter‖ tails than 

that allowed in a normal, Gaussian distribution, combinations of asset classes also 
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exhibit a higher incidence of joint negative returns in times of market stress.   That is, 

risky asset returns across asset classes abruptly decline in unison.   By way of 

example, as shown in Exhibit 4, both MSCI ACWI and GSCI have occasionally realized 

simultaneous loss events of four standard deviations or more.  A bivariate normal 

distribution would therefore provide a poor representation of the dynamics of these 

joint jumps observed in asset class returns observed in recent decades.  A more 

realistic approach is needed. 

 

EXHIBIT 4  

 

 

To account for the incidence of returns abruptly moving in unison, we employ 

copula theory which accommodates interrelated and extreme dependencies of returns.  

More specifically, copulas allow for the modeling of fat tails even when asset class 

returns present a high degree of co-movement as seen historically.  We chose to 

employ the t-copula because this particular copula enables us to better capture the 

effects of fat tails and allocate non-zero probabilities to observations which may occur 

outside of the range of historical returns.  By adjusting the copula’s degree-of-freedom 

parameter, we can extrapolate our multivariate fat-tailed distributions so that it is 

consistent with the observed empirical data. Having estimated the three regions of 

each marginal semi-parametric empirical CDF, we transform them to uniform variates, 

and then fit the t- copula to the transformed data.  

We can now move to step 4 and generate our scenario-based forward looking 

projections of downside risk across markets using Monte Carlo simulations. Given the 

parameters of the t-copula from step 3, we simulate 21 dependent uniform variates of 

all five indices 10,000 times. Then via the inversion of the semi-parametric marginal 

CDF of each index, we transform the uniform variates to standardized residuals to be 

consistent with those obtained from the AR(1)/GJR-GARCH(1,1) filtering process in 

step 1. These residuals are independent in time but dependent at any given point in 

time.  Here, we reintroduce the autocorrelation and volatility clustering observed in 
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the historical returns for each index.   This allows us to move to step 5 whereby we 

aggregate the portfolio and project a 21 forward day downside risk for the aggregate 

portfolio.  This downside risk is measured as the 95% CVaR, and is the average 

portfolio loss in the worst 5% scenarios, based on 10,000 Monte Carlo simulations.  

To generate the time series of our 21 day look-ahead portfolio risk forecast, we 

repeat the steps above and forecast the portfolio 95% CVaR under an expanding 

window approach.  To avoid look-ahead bias, we incorporate only that market 

information available at the time the model forecast is generated.   The result of our 

risk forecast effort is shown in Exhibit 6 as represented by our 21-day forward 

combined portfolio CVaR for the base portfolio.  As can be seen from Exhibit 6, our 

portfolio risk estimate is highly responsive to actual market dynamics. 

 

EXHIBIT 5  

 

EXHIBIT 6 

 

 

 

Forecasting Market Risk Environments 

 In the next part of our framework, we estimate the probability that the market 

environment is already in or about to enter a turbulent state and use this information 

to inform our asset allocation decision.  Here, our asset allocation is determined in 

accordance with one of two possible states of the world; normal risk (normal 

uncertainty: normal return volatility and correlations), and high risk (high uncertainty: 

high volatility and correlations, low returns).  The two market states are governed by a 

forward transition probability forecast of CVaR derived earlier.  Specifically, our CVaR 

forecast is used as the regime variable to fit a two-state Markov Regime Switching 
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process [see Ang Bekaert 2002, 2004)].   In this way, our regimes correspond to 

market dynamics and the non-normal return distributions characterizing markets 

Exhibit 7 reveals the meaningful presence of a normal regime and an event 

regime in our time-series forecast of market downside risk.  This is evidenced by the 

substantial change in both the mean and the standard deviation of our CVaR regime 

variable.  Over the estimation period, the high-risk, event regime shows an average 21-

day CVaR (95%) of -14.22% with a standard deviation of 5.69%, as compared to a 

higher average CVaR of -6.12% with a lower standard deviation of 1.63% for the 

normal regime.    

 

EXHIBIT 7 

 

In general, the Markov-Switching model we use seeks to more effectively 

capture the dynamic volatility of the regime variable as compared to simple data 

partitions based on arbitrary thresholds.  To understand why this is so, consider that 

if the prior CVaR estimate suggests a high volatile (normal) state, the model would 

more likely predict that the current market environment is also a high volatile (normal) 

state.   A naïve, fixed threshold may not make the same association and may thus 

classify the current state as part of the normal regime, if the current CVaR value is 

below the arbitrarily chosen threshold.  In short, the regime model we employ is better 

equipped to adapt over time to changing market conditions in real time. 

 Exhibit 8 shows the time-series results of the resulting forecast of the 

probability that the markets are in, or about to be in, a high risk state (regime 

probability bigger than 50%) over time.  To estimate our model, we use an expanding 

window approach with our first estimate in January 3, 2000 using data from February 

1, 1996 to January 2, 2000.  We generate each new forecast daily by simply adding 

new observations and re-estimating the model with the new observations as the data 

become available.   The results, shown in Exhibit 8, Panel A, highlight that our 

Markov-Switching model succeeded in meaningfully partitioning the market into two 
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regimes.  Exhibit 8, Panel B, shows the specific dates identified as the market being in 

a high-risk ―event‖ regime defined as an event probability of at least 50%.  

 

EXHIBIT 8  

  

A further understanding of the impact of our regime risk model on asset class 

performance can be inferred from the data presented in Exhibit 9.   Here, we 

summarize the risk and return statistics for each of our five asset classes during the 

study period, January 3, 2000 to October 10, 2011.   A comparison of Exhibit 9A 

(event days) and Exhibit 9B (full period), shows that during the event periods the 

median returns for all risky assets are lower and standard deviation of returns are all 

higher, versus the full period.  These results suggest that the model assisted in 

anticipating turbulent periods.4  Furthermore, extreme returns are shown to be a 

dominant presence during forecasted event regimes.  This can be seen from the 

percentiles, e.g. the 5th percentile and 95th percentile are much further apart for the 

event regime daily return distributions versus the full period.   

 

EXHIBIT 9  

 

 

Dynamic Asset Allocation  

 We now discuss the third, and final, part of our modeling; incorporating our 

forecast of market turbulence into an effective dynamic asset allocation framework.  

Our portfolio construction process responds to market dynamics by adjusting the 

overall portfolio asset allocation in accordance with our regime-based risk forecast and 

                                                           
4
 Furthermore, the maximum and minimum daily returns always occurred in the high volatile 

event regime suggesting that investors might benefit from a regime model that can correctly 

distinguish a third regime for high return periods. 
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Mean-CVaR optimization.5  As mentioned, we employ a risk-on (risk-off) approach as 

driven by our model prediction for either a normal or high risk state, respectively.  

Importantly, the dynamic portfolios we construct here facilitate a direct evaluation of 

the risk present in markets with an eye towards mitigating the impact of abrupt 

downside events frequenting markets via dynamic asset allocation.   

Specifically, we solve equation 3 to obtain the weights of a portfolio that 

maximizes expected return while targeting the CVaR to a desired level (see Rockafellar 

and Uryasev [2002]).  Expected returns and benchmark portfolio weights are shown in 

Exhibit 5.  This approach allows us to incorporate our copula-driven fat-tailed 

simulation scenarios into a portfolio allocation optimization problem.  Furthermore, as 

we will see, this allows the optimal portfolio allocation to be determined in accordance 

with our market regime prediction.  Specifically, the fixed expected return vector is 

represented by µ, and w is the set of weights that belongs to the space X.  We examine 

both an unconstrained portfolio with no-shorting and no-leverage portfolio (weights 

must be between 0% and 100%) and a constrained portfolio with bounds as shown in 

Exhibit 5.  The CVaR target constraint is represented by          and is the resulting 

forward-looking CVaR at a 95% confidence level as estimated given the set of weights, 

w, with a target CVaR level of γ. 

            

                          (3) 

 

We next demonstrate the approach by back-testing the model outcomes 

combining all three parts of our process over time.  We explore both unconstrained 

and constrained portfolio weighting schemes as shown in Exhibit 5.  As mentioned, we 

reduce the effect of any hindsight bias on our results by using static, unadjusted 

expected returns.  The main focus of this paper is to show the meaningful impact that 

can be had on portfolio performance by adjusting ―only‖ the portfolio asset allocation 

in accordance with dynamic forecasts of market risk as captured by changing variance 

and covariances across asset classes, over time.  To this end, we forecast risk and 

                                                           
5
 There is an extensive literature on advanced portfolio optimization techniques.  See, for 

instance, Fabozzi, et al., 2007 and Rachev, Stoyanov and Fabozzi 2008.  
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rebalance the portfolio according to pre-specified rules discussed below.  For all 

results, we use static expected returns and the policy portfolio as the benchmark 

portfolio, as shown in Exhibit 5.    

Exhibit 10 shows the results from our portfolio construction process.  In Panel 

A, we employ a set monthly rebalancing rule whereby we rebalance the portfolio every 

21-days.  We compare the performance of the benchmark portfolio to an unbounded 

(weights must be between 0% and 100%, e.g., no shorting and no leverage) portfolio 

construction processes, all rebalanced each 21 days.  The two unbounded portfolios 

are optimized portfolios based on CVaR, as discussed above.  We show results for 

several static target levels of CVaR, and we then allow the target level of CVaR to 

switch over time between a high- and low-risk level in accordance with our dynamic 

regime forecast.    

In row 1 of Exhibit 10, Panel A, we show the performance of the benchmark 

portfolio.   We compare outcomes for our unbounded portfolios which allow for the 

weights for each of our five asset classes to vary between 0% and 100% over the study 

period.   First, we show the performance of overall portfolios created by imposing a 

series of constant, maximum allowable level of mean-CVaRs.  Here, we report the 

results for five constant target CVaR levels ranging from lowest risk (3 percent CVaR) 

to highest risk (7 percent CVaR).  This allows a comparison of how various CVaR limits 

reflect changing risk conditions as estimated solely by our CVaR model, while 

temporarily ignoring our market risk regime forecast in constructing portfolios.  As 

expected, portfolio draw downs and volatility rise with each higher level of allowable 

risk along with higher realized total returns.  Importantly, all mean-CVaR optimized 

portfolios provide improved risk/return profiles, each outperforming the benchmark 

portfolio showing positive alphas along with higher corresponding Sharpe ratios of 

around 0.65. 

 

EXHIBIT 10  
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Next, we add step 3 into our process by incorporating the signal derived from 

our Markov-Switching risk model that identifies the current market state as being in 

either a high-risk or low-risk environment.    We estimate our model under the 

expanding window approach with daily data beginning in February 1, 1996 with our 

first regime risk estimate occurring in January 3, 2000.    If the risk model output 

suggests that the current environment is low-risk (high-risk) measured as less (more) 

than a 50% likelihood of being in a high-risk state, then we implement a risk-on (risk-

off) strategy and optimize portfolio weights allowing for a CVaR risk target of 7% (3%), 

respectively.   As before, expected return assumptions are the same for each state, and 

the optimization techniques are the same as those used in the constant target CVaR 

process, above.   The only difference being that we now allow the target portfolio to 

change its risk profile to either risk-on (7% CVaR) or risk-off (3% CVaR) to reflect our 

dynamic forecast of market risk.    

In this approach, we simply use the same rebalancing conditions as the 

constant CVaR process (i.e. same rebalancing dates and the constant 21-day 

rebalancing period).  On rebalancing days, we choose the target CVaR for the up-

coming 21-day period based on the prior day’s market risk regime signal.  Results 

show that incorporating the two-state market risk forecast meaningfully improves 

results over the benchmark and the constant CVaR approach.  With this risk-on/risk-

off framework, we are better able to capture a meaningful part of the upside that 

markets have to offer while also reducing the downside.  This approach represents 

considerable improvement over the rebalanced, static benchmark and also the various 

static levels of CVaR.  As evidence, consider that for the risk on/off model the Sharpe 

ratio rises to 0.68 while the maximum drawdown is now 19.73%, about half that of the 

benchmark.  We note that this max drawdown is equivalent to that calculated under 

the 3% CVaR portfolio as calculated earlier but now captures much of the upside 

afforded by the risk-on days.6 

Exhibit 10B summarizes our results by plotting the risk-return relationships for 

the various portfolios.    Overall, results reflect the view that our CVaR tail risk 

framework offers a highly relevant risk measurement approach for investors.   All 

CVaR related portfolios dominate the rebalanced static benchmark.  Even the 3% 

                                                           
6
 Our conclusions are unaffected when back-testing other rebalancing definitions. 
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CVaR, our lowest static risk portfolio, offered an appreciable excess return with far 

less risk than the benchmark.   Adding a regime-based risk-on/off dynamic process 

enhances the performance even further.  The regime-based optimization process 

outperforms the constant risk target allocations with significantly improved 

return/maximum drawdown ratios.  Overall, our high frequency signal-triggered 

rebalancing framework offers a high degree of sensitivity of portfolio performance to 

market risk regime changes.  That is, our flexible approach offers meaningful 

improvement in portfolio performance.  Note that we discuss the bounded portfolio 

process, below.  We offer these approaches as examples to allow readers a robust 

comparison of how various regime based strategies might perform over time.  Finally, 

with each of our approaches, we are sensitive to keeping transactions costs associated 

with a high frequency of signals low, an issue facing many such dynamic frameworks.   

Exhibit 11 shows the corresponding portfolio exposures of our five asset classes 

over time from our unbounded risk-on/risk-off regime-based approach that 

rebalances every 21 days.  The exhibit shows the wide variation in asset allocation 

weightings generated by this approach.   Many will consider the unbounded model 

presented here too demanding as it dictates dramatic shifts in portfolio asset 

allocation over time.    

 

EXHIBIT 11 

 

We appreciate the concern associated with such wide swings in asset 

weightings associated with portfolio rebalancing.  To mitigate the wide swings in asset 

allocation associated with our unbounded approach, we next impose constraints on 

the range of allowable portfolio weights.  Specifically, we test a constrained portfolio 

which allows the range of portfolio weights to vary only as much as that indicated in 

Exhibit 5.  This bounded portfolio framework we test follows that of the 21-day 

rebalancing approach discussed above.   Results show that performance versus a 

rebalanced static-weighted benchmark can benefit from our dynamic risk modeling 

framework even when imposing target portfolio constraints as typically done by many 

investors.  As shown in Exhibits 10A and 10B, the bounded model offers considerable 
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improvement in both risk and return versus the rebalanced static-benchmark.   

Exhibit 12 shows the corresponding portfolio exposures over time for each of the five 

asset classes associated with the bounded risk-on/risk-off regime-based approach.   

As expected, it differs markedly from Exhibit 11.  We note that during the global 

financial crisis of 2008-2009, given the minimum allowable allocation to risky assets, 

the model is unable to consistently achieve the desired 7% CVaR associated with a 

risk-off regime.   This simply means that we are not always able to obtain the portfolio 

risk limits imposed when using a constrained approach with sizable minimum 

allowable allocations to risky assets.   

 

EXHIBIT 12 

 

  Exhibit 13 shows the total cumulative returns to the various rebalancing 

approaches: benchmark, static allocations with 3%, 5% and 7% constant target CVaR, 

and a regime-based allocation that switches between 3% and 7% target CVaR under 

the same rebalancing conditions as the static allocations. This Exhibit offers visual 

evidence that our regime-based risk framework offers investors a meaningful approach 

to portfolio construction in the presence of fluctuating market risk.   

 

Exhibit 13 

 

Conclusions 

We propose a dynamic portfolio construction model that accounts for the reality 

of heavy tails and dynamic return correlations as witnessed in markets.  The powerful 

framework behind our portfolio construction is a dynamic process that integrates 

high-frequency information to capture the time-varying risks of asset classes within 

the investor’s portfolio.   We use our dynamic risk information to adjust optimal asset 

allocation across time and market states using only information known at the time of 

model implementation.  We find that ongoing monitoring of markets using our market 
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risk barometer and corresponding asset allocation framework offers investors the 

promising opportunity to improve portfolio performance in challenging market 

environments. 
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EXHIBIT 1 Asset Classes, Indices and Summary Statistics of Daily Returns 

Period from February 1, 1996 to October 10, 2011 

 
Global Equity Commodities Real Estate High Yield Investment Grade 

Index MSCI ACWI SPGSCI DW REITs MLHY Barclay Agg 

Mean 0.02% 0.03% 0.06% 0.03% 0.02% 

Std Deviation 1.04% 1.50% 1.90% 0.29% 0.26% 

Median 0.07% 0.03% 0.03% 0.05% 0.03% 

Min -7.10% -8.76% -19.76% -4.73% -2.04% 

Max 9.31% 7.48% 18.98% 2.78% 1.71% 

1st Percentile -2.98% -4.08% -6.30% -0.87% -0.64% 

99th 
Percentile 

2.68% 3.62% 6.24% 0.73% 0.66% 

5th Percentile -1.61% -2.40% -2.32% -0.36% -0.40% 

95th 
Percentile 

1.53% 2.37% 2.16% 0.36% 0.41% 

10th Percentile -1.09% -1.70% -1.33% -0.21% -0.27% 

90th 
Percentile 

1.07% 1.82% 1.39% 0.24% 0.32% 

Skewness -0.24 -0.16 0.44 -2.74 -0.27 

Kurtosis 7.50 2.38 21.21 42.55 3.11 
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EXHIBIT 2 Autocorrelations of Daily Returns and Squared Returns – ACWI 

 

Panel A. Log Daily Returns 

 

 

Panel B.  Standardized Log Residual Returns  
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EXHIBIT 3 ACWI Lower and Upper Tail Fit  
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EXHIBIT 4 Scatter Plot of ACWI vs GSCI Log Daily Returns   
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EXHIBIT 5 Portfolio Assumptions 

 
Global Equity Commodities Real Estate High Yield Investment Grade 

Index (MSCI ACWI) (SPGSCI) (DW REITs) (MLHY) (Barclay Agg) 

Policy 
Allocation 

45% 10% 10% 15% 20% 

Portfolio 
Bounds 

30 - 70% 5 - 15% 5 - 15% 7 - 23% 10 - 40% 

Expected 
Returns 

7% 6.5% 7% 6% 4% 
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EXHIBIT 6 Historical 21-day Forward-Looking 95% CVaR(Log) 
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EXHIBIT 7 Markov-Switching Model Perfect Insights Estimation 

  
Regime 1 

  

Regime 2 
("event") 

 

 
Persistence Mu Sigma Persistence Mu Sigma 

Market Downside 
Risk 99.14% -6.12% 1.63% 96.29% -14.22% 5.69% 
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EXHIBIT 8 Expanding Window Approach 1/3/2000 – 10/10/2011 

(A) Probability of the Event Regime 
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EXHIBIT 8 Expanding Window Approach 1/3/2000 – 10/10/2011 

(B) Event Regime Periods 

Start 4-Jan-00 9-Feb-00 18-Feb-00 14-Apr-00 11-Oct-00 10-Nov-00 20-Feb-01 9-Mar-01 6-Jul-01 6-Sep-01 

End 8-Feb-00 10-Feb-00 23-Feb-00 9-Jun-00 6-Nov-00 18-Jan-01 6-Mar-01 9-May-01 17-Jul-01 24-Oct-01 

Trading Days 
in Between 24 1 2 38 18 45 10 42 7 31 

           
Start 29-Oct-01 10-Dec-01 13-Dec-01 29-Jan-02 19-Feb-02 26-Jun-02 26-Nov-02 5-Dec-02 9-Dec-02 27-Dec-02 

End 8-Nov-01 11-Dec-01 21-Dec-01 13-Feb-02 26-Feb-02 21-Nov-02 27-Nov-02 6-Dec-02 26-Dec-02 2-Jan-03 

Trading Days 
in Between 8 1 6 11 5 104 1 1 12 3 

           
Start 21-Jan-03 24-Jan-03 24-Feb-03 10-Mar-03 24-Mar-03 10-May-04 19-May-06 2-Jun-06 6-Jun-06 6-Jul-06 

End 23-Jan-03 21-Feb-03 28-Feb-03 19-Mar-03 15-Apr-03 25-May-04 23-May-06 5-Jun-06 30-Jun-06 7-Jul-06 

Trading Days 
in Between 2 19 4 7 16 11 2 1 18 1 

           
Start 21-Jul-06 25-Jul-06 27-Feb-07 7-Jun-07 12-Jun-07 26-Jul-07 19-Oct-07 9-May-08 6-Jun-08 27-Jul-09 

End 24-Jul-06 26-Jul-06 30-Mar-07 8-Jun-07 15-Jun-07 1-Oct-07 2-May-08 12-May-08 24-Jul-09 28-Jul-09 

Trading Days 
in Between 1 1 23 1 3 46 134 1 285 1 

           
Start 17-Aug-09 3-Sep-09 9-Sep-09 30-Oct-09 27-Nov-09 4-Feb-10 4-May-10 18-Mar-11 4-Aug-11 

 
End 2-Sep-09 4-Sep-09 10-Sep-09 12-Nov-09 9-Dec-09 17-Feb-10 26-Jul-10 21-Mar-11 10-Oct-11 

 Trading Days 
in Between 12 1 1 9 8 8 57 1 46 
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EXHIBIT 9 Summary Statistics of Daily Returns 1/3/2000 – 10/10/2011 

 

Global Equity Commodities Real Estate High Yield Investment Grade 

Index MSCI ACWI SPGSCI DW REITs MLHY Barclay Agg 

Mean 0.01% -0.02% 0.05% 0.00% 0.03% 

Std Deviation 1.59% 1.89% 3.32% 0.47% 0.30% 

Median 0.08% 0.03% 0.03% 0.03% 0.04% 

Min -7.10% -8.76% -19.76% -4.73% -2.04% 

Max 9.31% 7.48% 18.98% 2.78% 1.71% 

1st Percentile -4.90% -5.35% -9.27% -1.62% -0.70% 

99th Percentile 4.41% 4.93% 11.12% 1.12% 0.79% 

5th Percentile -2.50% -3.13% -5.31% -0.74% -0.47% 

95th Percentile 2.31% 2.81% 5.00% 0.64% 0.47% 

10th Percentile -1.75% -2.26% -3.00% -0.46% -0.34% 

90th Percentile 1.66% 2.12% 3.17% 0.44% 0.37% 

Skewness -0.14 -0.28 0.33 -1.45 -0.18 

Kurtosis 6.50 5.13 9.66 17.79 6.53 

(A) Event Days 

 

MSCI ACWI SPGSCI DW REITs MLHY Barclay Agg 

Mean 0.01% 0.03% 0.07% 0.03% 0.03% 

Std Deviation 1.13% 1.62% 2.20% 0.33% 0.26% 

Median 0.07% 0.05% 0.09% 0.05% 0.03% 

Min -7.10% -8.76% -19.76% -4.73% -2.04% 

Max 9.31% 7.48% 18.98% 2.78% 1.71% 

1st Percentile -3.55% -4.37% -7.37% -0.96% -0.64% 

99th Percentile 2.90% 3.84% 7.33% 0.84% 0.66% 

5th Percentile -1.74% -2.62% -2.88% -0.42% -0.41% 

95th Percentile 1.61% 2.54% 2.61% 0.42% 0.42% 

10th Percentile -1.21% -1.86% -1.71% -0.25% -0.28% 

90th Percentile 1.14% 2.00% 1.65% 0.28% 0.33% 

Skewness -0.21 -0.19 0.38 -2.51 -0.21 

Kurtosis 9.86 5.02 18.63 38.30 6.13 

(B) Full Period 

 

 

 

 



EXHIBIT 10 
           Panel A Unbounded 

Optimization 
          

    
Info 
Ratio Alpha 

Tracking 
Error 

Sharpe 
Ratio 

Return 
/ 

MaxDD MaxDD 

Worst 
21day 
loss 

Annual 
Return 

Annual 
Volatility 

Hit 
Ratio 

  Benchmark 
  

0.24 0.11 42.83% 15.99% 4.84% 14.26%   

  
          

  
No leverage, no 
shorting Constant Target CVaR 

       
  

  3% 0.23 2.91% 12.56% 0.67 0.39 19.73% 13.00% 7.75% 8.32% 49.65% 

  4% 0.48 4.25% 8.78% 0.67 0.33 27.62% 15.52% 9.09% 10.56% 53.90% 

  5% 0.65 4.81% 7.36% 0.63 0.29 33.22% 16.34% 9.65% 12.45% 56.03% 

  6% 0.78 5.47% 7.05% 0.61 0.27 37.71% 16.97% 10.31% 14.11% 65.96% 

  7% 0.79 5.68% 7.20% 0.59 0.26 40.90% 17.53% 10.52% 15.29% 63.83% 

  
          

  

  Regime Based Target CVaR (Same Rebalancing Conditions) 
    

  

  3%, 7% 0.44 4.90% 11.09% 0.68 0.49 19.73% 14.84% 9.74% 11.39% 60.28% 

                        

            Panel B  Bounded Optimization 
            Regime Based Target CVaR (Same Rebalancing Conditions)           

  
 

Info 
Ratio Alpha TrackingError 

Sharpe 
Ratio 

Return 
/ 

MaxDD MaxDD 

Worst 
21day 
loss 

Annual 
Return 

Annual 
Volatility 

Hit 
Ratio 

Bound  3%, 7% 0.37 1.40% 3.74% 0.37 0.18 35.36% 13.20% 6.24% 12.54% 59.57% 



 

Exhibit 10B Portfolio Risk & Return Comparison 

 

  

Benchmark 
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EXHIBIT 11 Optimal Portfolio Weights: Regime Based (3%, 7% Target 

CVaR) 
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EXHIBIT 12 Optimal Portfolio Weights: Bounded Portfolio 
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EXHIBIT 13 Cumulative Portfolio Returns 
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